
AN EVALUATION OF A STATISTICAL FRAMEWORK
AND ALGORITHMS FOR ADAPTIVE AGGREGATION

By

Brandeis Hill

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Sibel Adalı, Thesis Advisor

Malik Magdon-Ismail, Co-Thesis Advisor

Mark Goldberg, Member

Mukkai Krishnamoorthy, Member

Frank Spear, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007
(For Graduation May 2007)

AN EVALUATION OF A STATISTICAL FRAMEWORK
AND ALGORITHMS FOR ADAPTIVE AGGREGATION

By

Brandeis Hill

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Sibel Adalı, Thesis Advisor

Malik Magdon-Ismail, Co-Thesis Advisor

Mark Goldberg, Member

Mukkai Krishnamoorthy, Member

Frank Spear, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007
(For Graduation May 2007)

c© Copyright 2007

by

Brandeis Hill

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . x

ABSTRACT . xi

1. INTRODUCTION . 1

1.1 Problem Setting and Scope . 1

1.2 Motivation . 3

1.3 Contributions and Methodology . 4

1.4 Dissertation Outline . 6

2. RELATED WORK . 8

2.1 Overview of Web Search . 9

2.1.1 Information Retrieval . 10

2.1.2 Query-information need . 14

2.1.3 Link Analysis . 15

2.1.4 Evaluation . 18

2.2 Merging Algorithms . 25

2.2.1 Overview of Meta-Search . 26

2.2.2 Rank-based Merging . 28

2.2.3 Score-based Merging . 34

2.3 Preferences and Personalization . 36

2.3.1 Types of Preferences . 37

2.3.2 Representation of Preferences 39

3. BASIC CONCEPTS . 42

3.1 Terminology . 42

3.2 Performance measures . 43

3.2.1 Recall . 44

3.2.2 Precision and TREC-style average precision 44

3.2.3 Spearman’s rho footrule and Kendall-tau 45

iii

4. RANK BASED ALGORITHMS . 47

4.1 Background . 47

4.2 Average (Av) and Median (Me) . 48

4.3 CombMNZ . 48

4.4 PageRank (Pg) – A Markov Chain Aggregator 48

4.5 Precision Optimal Aggregation (PrOpt) 49

4.6 Condorcet-fuse . 50

4.7 Kendall-tau Optimal Aggregators . 51

4.7.1 Adjacent Pairs (ADJ) . 51

4.7.2 Iterative Best Flip (IBF) . 52

4.8 Information vs. robustness trade-off 56

5. APPROXIMATION ALGORITHMS . 59

5.1 Minimum Feedback Arc Set (MFAS) Problem 59

5.2 Approximation Algorithms for MFAS 60

5.2.1 Greedy Algorithm (Greedy) 61

5.2.2 CUT-recursive Algorithm (CUT) 61

5.2.3 Sublist-IBF Algorithm (SubIBF) 65

6. STATISTICAL FRAMEWORK FOR AGGREGATION 67

6.1 Framework Basics . 67

6.2 Missing data . 72

6.3 Correlated data . 72

7. EXPERIMENTAL EVALUATION . 76

7.1 Rank Based Algorithms . 78

7.1.1 Baseline results . 78

7.1.2 Missing data . 98

7.1.3 Correlated data . 102

7.2 Approximation Algorithms . 110

7.2.1 Kemeny Optimization Results 111

7.2.2 Statistical Performance Results 113

7.3 TREC Data Collection . 114

7.4 Real Data . 117

iv

8. DETERMINING MISINFORMATION AND NOISE 120

8.1 Introduction . 120

8.2 Clustering of Rankers . 120

8.3 Identification of Misinformation and Noise 122

8.4 Experimental Evaluation . 125

8.5 Analysis and Discussion . 136

9. SUMMARY AND CONCLUSIONS . 147

CITED LITERATURE . 151

v

LIST OF TABLES

3.1 Kendall-tau disagreement penalties . 46

7.1 Legend of algorithms . 77

7.2 Error to the lower bound (optz) . 111

7.3 Runtime and average error to the ground truth 113

7.4 TREC-3 Results . 116

7.5 TREC-5 Results . 116

7.6 TREC-9 Results . 117

8.1 top-10 objects from 15 rankers . 124

8.2 precision similarity matrix . 124

8.3 Average cluster quality of top-10 objects, 2 clusters, using average pre-
cision to cluster. The x-axis denotes the misinformation (nMI) when
there are 15 input rankers. The y-axis denotes the noise (σ2). Each mis-
information and noise case displays the minimum, mean and maximum
cluster quality observed in the 40,000 datasets. 128

8.4 Variance of ranks of top-10 objects, 2 clusters, using average precision to
cluster. The x-axis denotes the misinformation (nMI) when there are 15
input rankers. The y-axis denotes the noise (σ2). Each misinformation
and noise case displays the minimum, mean and maximum rank variance
observed in the 40,000 datasets. 129

8.5 Average cluster quality of top-10 objects, 3 clusters, using average pre-
cision to cluster. Refer to Table 8.3 for a full description of the table. . 129

8.6 Variance of ranks of top-10 objects, 3 clusters, using average precision
to cluster. Refer to Table 8.4 for a full description of the table. 130

9.1 Synopsis of Algorithms . 149

vi

LIST OF FIGURES

6.1 Possible shapes of the correlation between factors and the magnitude
of errors. The x-axis displays the interval of the factor scores where a
positive value indicates more relevant factor. The y-axis displays the
amount of error being adding to the factor scores. The δ and β denote
the degree in which these factor scores are corrupted. 69

6.2 Statistical framework symbols and definitions 71

7.1 Summary of results for the baseline case: no missing objects and no cor-
relation. The x-axis denotes the misinformation (nMI). The columns
from left to right increase the number of input rankers that use the
weight function w′. The y-axis denotes the noise (σ2). The rows from
bottom to top increase the maximum variance of noise for the fac-
tors. The top-3 aggregators for each misinformation and noise case
is displayed. Part (a) gives the top aggregators using the precision
performance measure and part (b) gives the top aggregators using the
Kendall-tau performance measure. Refer to Table 7.1 for the notation
of the aggregators. 79

7.2 precision performance for nMI = 0 with different levels of noise. The
graphs (a)-(d) display the topological sort results of the aggregation
methods where the quality of the aggregation method decreases from
left to right for each misinformation (nMI) and noise (σ2). The edge
weight indicate how much more precision is gained between adjacent
aggregators. Refer to Table 7.1 for the notation of the aggregators. . . 83

7.3 Precision performance for nMI = 1 with different levels of noise. Refer
to Figure 7.2 for the description of these graphs. 85

7.4 Precision performance for nMI = 2 with different levels of noise. Refer
to Figure 7.2 for the description of these graphs. 87

7.5 Precision performance for nMI = 3 with different levels of noise. Refer
to Figure 7.2 for the description of these graphs. 88

7.6 Precision performance for nMI = 4 with different levels of noise. Refer
to Figure 7.2 for the description of these graphs. 90

vii

7.7 Kendall-tau performance for nMI = 0 with different levels of noise. The
graphs (a)-(d) display the topological sort results of the aggregation
methods where the quality of the aggregation method decreases from
left to right for each misinformation (nMI) and noise (σ2). The edge
weight indicate the difference in swaps between adjacent aggregators.
Refer to Table 7.1 for the notation of the aggregators. 92

7.8 Kendall-tau performance for nMI = 1 with different levels of noise.
Refer to Figure 7.7 for the description of these graphs. 93

7.9 Kendall-tau performance for nMI = 2 with different levels of noise.
Refer to Figure 7.7 for the description of these graphs. 94

7.10 Kendall-tau performance for nMI = 3 with different levels of noise.
Refer to Figure 7.7 for the description of these graphs. 95

7.11 Kendall-tau performance for nMI = 4 with different levels of noise.
Refer to Figure 7.7 for the description of these graphs. 96

7.12 Statistical framework symbols and definitions 98

7.13 10% Missing Objects. Refer to Figure 7.1 for the full description of
these tables. 100

7.14 50% Missing Objects. Refer to Figure 7.1 for the full description of
these tables. 101

7.15 Objects are positively correlated for one factor of the ground truth with
σn = 0.60. Refer to Figure 7.1 for the full description of these tables. . 104

7.16 Objects are negatively correlated for one factor of the ground truth with
σn = −0.60. Refer to Figure 7.1 for the full description of these tables. 105

7.17 Two factors are positively correlated for the ground truth with σf =
0.60. Refer to Figure 7.1 for the full description of these tables. 106

7.18 Two factors are negatively correlated for the ground truth with σf =
−0.60. Refer to Figure 7.1 for the full description of these tables. . . . 107

7.19 Positive correlation between errors performed by rankers for two objects
for the same factor with σ∗n = 〈0.60, 0.60, 0.0, 0.0, 0.0〉. Refer to Figure
7.1 for the full description of these tables. 108

7.20 Positive correlation amongst the rankers with σ∗R = 0.10. Refer to
Figure 7.1 for the full description of these tables. 109

7.21 Best aggregate rankers w.r.t. lower bound. Refer to Figure 7.1 for the
full description of these tables. 112

viii

7.22 Best aggregate rankers w.r.t. ground truth using the Kendall-tau per-
formance measure. Refer to Figure 7.1 for the full description of these
tables. 115

7.23 small sample real dataset results . 118

8.1 width of cluster C1 and C2 (in black), distance between clusters C1
and C2 (in gray) . 122

8.2 Summary of results for the baseline case with 15 input rankers. Refer
to Figure 7.1 for the full description of these tables. 126

8.3 Flow chart of misinformation and noise evaluation 127

8.4 (a) Best aggregators by class using precision results, (b) Best aggrega-
tors by class using Kendall-tau results 133

8.5 Precision performance results using CombMNZ as a static aggregator.
The x-axis denotes the misinformation (nMI) when there are 15 input
rankers. The y-axis denotes the noise (σ2). Each misinformation and
noise case displays the minimum, mean and maximum precision perfor-
mance improvement observed in the 40,000 queries. Part (a) displays
the improvement when all queries are correctly classified in terms of
misinformation and noise and part (b) displays the improvement when
using Bayes Theorem. 138

8.6 Precision performance results using PrOpt as a static aggregator. Refer
to Figure 8.5 for a full description. 139

8.7 Precision performance results using PgADJ as a static aggregator. Refer
to Figure 8.5 for a full description. 140

8.8 Kendall-tau performance results using Pg as a static aggregator. The x-
axis denotes the misinformation (nMI) when there are 15 input rankers.
The y-axis denotes the noise (σ2). Each misinformation and noise case
displays the minimum, mean and maximum Kendall-tau performance
improvement observed in the 40,000 queries. Part (a) displays the im-
provement when all queries are correctly classified in terms of misinfor-
mation and noise and part (b) displays the improvement when using
Bayes Theorem. 142

8.9 Kendall-tau performance results using MeIBF as a static aggregator.
Refer to Figure 8.8 for a full description. 143

8.10 Kendall-tau performance results using CombMNZ as a static aggrega-
tor. Refer to Figure 8.8 for a full description. 144

ix

ACKNOWLEDGEMENTS

During my graduate career at Rensselaer Polytechnic Institute, many people have

directly and indirectly influenced my research and personal development. With their

guidance, it would be impossible to complete this dissertation.

I would like to first acknowledge my advisor, Dr. Sibel Adalı for providing the

opportunity to conduct research under her guidance and supervision. I would like

to express my deepest gratitude for her patience and feedback. Her multifaceted

contributions to the research is much appreciated.

I would like to also acknowledge my co-advisor, Dr. Malik Magdon-Ismail

for his guidance and suggestions to this research. He provided the mathematical

fundamentals necessary for the statistical framework. I am very grateful for his

technical expertise.

A special thank you is extended to my doctoral committee, Dr. Mark Gold-

berg, Dr. Mukkai Krishnamoorthy and Dr. Frank Spear, for their comments and

suggestions.

Through the years, the following people have assisted in my personal devel-

opment: Dr. John Alan Bivens II, Kim Bivens, Rasheda Huggins, Lesley Mbogo,

Dr. Bettina Schimanski, Dr. Bouchra Bouqata, Dr. Kaoutar El Maghraoui, Ben-

jarath Phoophakdee, Dr. Chi-nan Chiang, Dr. Ken Durgans, Dr. Juan Gilbert, Dr.

Raquel Hill, Dr. Damon Woodard, Dr. Jamika Burge, Karen Hare, Jamila Greene,

Chris Coonrad, Shannon Carrothers, Pam Paslow, Jacky Carley and countless oth-

ers.

Lastly, I would like to thank my parents, Carlton and Magnolia Hill, for in-

stilling the value of work and perseverance. Your understanding and support was

never-ending. This degree is as much yours as mine. I would also like to thank

Gemez Marshall, my husband, for his daily encouragement and assistance.

Thank You All.

Dr. Brandeis Hill Marshall

x

ABSTRACT

The rank aggregation problem aims to combine several ranked lists to obtain a fi-

nal “consensus” ranked list that gives better results than any one of the individual

ranked lists. With the emergence of the World Wide Web, the meta-search commu-

nity has studied the rank aggregation problem in order to aggregate search results

from multiple search engines and increase the coverage of the Web by accessing more

information. The existing aggregation methods address the problem of capturing

the user feedback accurately while minimizing the impact of outliers or spam. How-

ever, the prior work does not provide guidelines about when to use the aggregation

method in which problem setting as well as how to dynamically select an aggregation

method for that problem setting. In this thesis, we address these shortcomings in

the prior work. Since rank aggregation also appears in fields other than the Web,

we need a more general platform to examine an optimal ranking. We define two

factors that contribute to the performance of rank aggregation methods including

noise, such as spam, and misinformation, such as trustworthiness.

In meta-search, relevance of an object is difficult to decide since evaluation

depends on subjective expert judgments. To address this concern, we propose a

flexible statistical framework to model the possible different relationships between

the rankers, such as search engines, and the ground truth. Our model contains a

ground truth ranker, which corresponds to the correct ordering of objects, and the

input rankers that serve as approximations of the ground truth ranker. We also

develop several aggregation methods that capture different aspects of the rank in-

formation including precision optimal, iterative best flip and three algorithms that

are approximations to the minimum feedback arc set problem. We show that there is

a trade off between information and robustness when selecting the best aggregation

method and that none of the well-known rankers perform well uniformly in all dif-

ferent noise and misinformation conditions. We develop classification methods and

bayesian techniques to dynamically select the optimal aggregator based on classified

noise and misinformation.

xi

CHAPTER 1

INTRODUCTION

The rank aggregation problem aims to combine several ranked lists to obtain a fi-

nal “consensus” ranked list that gives better results than any one of the individual

ranked lists. The existing approaches in finding a solution to this problem include

devising algorithms to exploit different aspects of the ranked lists and using hu-

man evaluators or information from prior requests to test the accuracy of these

algorithms. The existing aggregation methods [53, 56, 60, 86, 97, 104] address the

problem of capturing the user feedback accurately, capturing the most useful infor-

mation in the rankings and suppressing outliers or spam. However, the prior work

only provides an ad-hoc definition of spam and does not provide any guidelines as

to which algorithm to use when. Furthermore, most of the algorithms developed in

the prior work are static and do not address the problem of automatically adopting

the aggregation methods to the specific problem setting. While the rank aggrega-

tion problem has been studied widely in the meta-search community, the problem

arises in many different fields where objects are ranked. Therefore, a more general

definition of optimal ranking in the presence of noise and also misinformation is

needed. This is the problem studied in this thesis. We define two factors related to

the performance of rank aggregation methods, namely noise (including spam) and

misinformation or trustworthiness. We then develop optimal aggregation methods

as a function of these factors. In this chapter, we formalize the problem and discuss

the motivation and contributions of this research.

1.1 Problem Setting and Scope

The hunt or search for relevant information is not new; however, the quality

and quantity of information has changed with the emergence of the World Wide Web.

In the information search domain, each ranked list (ranker) refers to a search engine

result of a specific query and the aggregator refers to the results of a meta-search

engine for that query. The aggregator only has access to the ranking of objects.

1

2

Even though the ranks may be obtained by a scoring system, this information is not

available to the aggregator. It is possible that the aggregator may have additional

information about each object, but we do not take this information into account.

In this thesis, we assume this information can be integrated in many different ways

to the optimal ranking algorithm.

One of the main stumbling blocks in search is deciding which information is

relevant. Relevance is usually considered a subjective notion. Hence, evaluation

methods tend to use real data and expert judgment to determine relevance. But,

this makes it hard to test methods on a large number of datasets in order to arrive

at significant, repeatable results.

In information retrieval, a number of factors are taken into account to deter-

mine relevance such as the number of times and the location of the occurrence of

each keyword. The correct way to incorporate these factors require understanding

the data collection and the importance of each factor with respect to this collection.

Another challenge of searching the Web is the open nature of the Web. Documents

are created and maintained by many different individuals with different standards

and styles. There is generally no way to certify the correctness of information pro-

vided on a Web site. In fact, the Web contains malicious agents that purposefully

misrepresent information. Furthermore, the data are updated in different intervals

in each site, hence the data contained at a Web site can be stale and therefore incor-

rect. To address some of the problems posed by such an environment, search engines

take into account a large number of factors to determine relevance in addition to

the content of a Web page. Examples of such factors are frequency of updates to a

Web page, number of incoming hyperlinks to a Web page and the text contained in

the hyperlinks.

Our focus is to find the best way to incorporate the rank information from

different sources. We investigate the problem of aggregating different rankers to

provide a single ranking that best represents the true ranking of objects. As experts

may evaluate their ranking with respect to various alternatives to solving a problem,

we may want to find the best ranking based on how much we trust or distrust certain

experts on various topics. We need to examine how we can factor these measures

3

into aggregation. To address our problem, we first examine the properties of rankers.

• Let’s assume there exists a ground truth of what the correct ranking should be.

We then have to find how each ranker’s rankings relate to this ground truth.

How much information and how much noise is contained in the rankings? Do

rankers make similar mistakes?

• Given these different criteria for characterizing rankers, what is the perfor-

mance of different rank aggregation methods? Are there different classes of

rank aggregation methods that perform well for different cases or do they

perform all the same?

• If different aggregators perform well under different cases, how can this infor-

mation be leveraged to formulate an adaptive aggregation algorithm?

1.2 Motivation

Search is an inherently complex problem, requiring the information system

to assess the meaning of a user query, match it to a document’s content, such

as a Web page, and determine the relevancy of the document to the user query.

To determine the relevance of a document to a query consisting of keywords, the

system has to first locate the documents that contain the given keywords assuming

such documents exist. Note that in the absence of an exact match for the given

keywords, the query can be expanded to keywords with similar meaning. However,

due to the redundancy of information available in the World Wide Web, this is a

rare occurrence. Secondly, as the relevant documents are found, they have to be

ordered in terms of their match quality to the given keyword.

Even though the methods used by search engines proved to be quite effective

in eliminating irrelevant results, they are still open to manipulation. For example,

a document is regarded as spam if it does not contain relevant information but is

highly ranked. This may be due to one of many techniques such as text weaving

and link farms employed to fool the algorithm for computing these factors. Even

though search engines are a good filter for spam, aggregating results from multiple

search engines is usually a more effective method for suppressing spam. It is harder

4

to manipulate multiple distinct algorithms than a single one. This is one of the

main motivations for using meta-search engines, which aggregate search results from

multiple search engines to produce a new ranking. Another advantage of meta-search

engines is that they increase the coverage of the Web by allowing access to a larger

database consisting of all search engines it combines.

Aggregating many independent rankers generally improves the ranking quality.

However, this is only true if the rankers are simply noised versions of the ground

truth. It is possible that the rankers may also introduce misinformation to their

rankings for many reasons. For example, they may want to hide their ranking

method so they may choose to purposefully alter their ranking for different queries.

Similarly, malicious rankers may want to manipulate the final ranking of objects

by altering their ranking. In this case, it is not desirable to aggregate all rank

information, but to disregard some. Different aggregation methods may disregard

different types of information and hence the most appropriate aggregation method

should be chosen for a given scenario.

Rank aggregation is not only relevant to information search but in any field

where objects are ranked by different individuals or parties and a final ranking of

objects is needed. The work introduced in this thesis equally applies to these as

long as the ranking method is similar to the one studied here.

1.3 Contributions and Methodology

Given the above issues, the main objective is to examine the rank aggregation

problem from a different perspective, where the quality of the input rankers (not

simply the individualized results) is an important factor in aggregation but also

customization of search results can be achieved through effective aggregation. In

this dissertation, we provide the following contributions:

• develop a flexible statistical framework to model the possible different rela-

tionships between the rankers and the ground truth;

• develop several aggregation algorithms that capture different aspects of the

rank information including precision optimal, iterative best flip and three al-

5

gorithms that are approximations to the minimum feedback arc set problem;

• show a trade off between information and robustness when selecting the best

aggregator and that none of the well-known rankers perform uniformly well in

all different conditions; and

• how to identify misinformation of the input rankers and noise in which to

effectively customize the search results.

To fully understand the properties of the aggregation methods, we propose a statis-

tical model for aggregation which comprises of properties that are associated with

each ranker. Our model contains a ground truth ranker, which corresponds to the

correct ordering of objects, and the input rankers that serve as approximations of

the ground truth ranker. We assume the ranking of objects is based on a number of

factors and the rankers use a similar method to estimate the ground truth ranking.

However, they may make mistakes or give different weights to the factors. This

framework allows us to generate datasets with many different settings. Each set-

ting allows for rankers to make different types of errors. Using this framework, we

evaluate existing aggregation algorithms and introduce others, which are based on

algorithms that appear in the literature such as local Kemenization [53], Kernighan

and Lin graph partitioning [78] and bi-connected components.

We perform an extensive experimental evaluation of synthetic datasets to un-

derstand the quality of rankers. The experimental evaluation is useful for a theo-

retical study of the impact of the properties of rankers on the performance of the

aggregator. Our findings show that the choice of an optimal ranker is a balance of

robustness and information. An aggregator that disregards a lot of information is

robust to noise. We consider such aggregators as simple. However, as a simple ag-

gregator ignores a lot of information, it does not perform as well as a more complex

one in low noise cases. Another issue is the possible asymmetry between rankers,

which requires rankers that are robust to outlier ranks such as the median ranker.

The amount of robustness needed is a function of noise. As the noise becomes very

high, the information available in each ranker is reduced considerably. As a result,

more complex rankers become competitive again.

6

Given this complex equation involving the choice of the best aggregator, the

next question is how to determine the best aggregator for a specific scenario. To ad-

dress this problem, two metrics are introduced to measure noise and misinformation.

We show that these metrics can be used to correctly determine the specific noise and

misinformation scenario using the statistical framework. We show that by dynam-

ically determining the specific scenario and using the best ranker for this scenario,

we are able to improve over the performance of any of the known rank aggregation

methods. Our methods can be easily extended to real life settings where the ground

truth is not known. Our methods require very little user input for the training phase

and can be obtained implicitly by observing user behavior in a non-intrusive way.

We validate our results using real data in two different settings. First, we use

the TREC [69] data collection, which provides a large number of rankers that we

randomly sample. This data collection has relevance labels for each object. The

relevance judgments simply defines objects that are a possible match from those

objects that are not a match. However, as the relevance judgments are not ranked,

we can only evaluate them using the precision performance measure. The second

data set is collected from the Web by us using a large number of search engines.

In this case, we conduct a small user study to determine the relevance ordering of

select list of objects. We use this information to order the aggregation methods. In

both settings, we estimate the noise and misinformation and validate our ordering

of rankers.

1.4 Dissertation Outline

The rest of the thesis is organized as follows. Chapter 2 reviews the previ-

ous literature in searching, aggregation methods and user preferences. Chapter 3

outlines the appropriate background and terminology we use for the remainder of

this work. Chapters 4 and 5 describe rank-based and approximation aggregation

algorithms. In Chapter 6, we present the statistical framework for aggregation. An

evaluation of the statistical framework, which compares the algorithms presented in

Chapters 4 and 5, is conducted in Chapter 7. In Chapter 8, we develop methods to

dynamically adjust the rank aggregation method to the properties of the rankers.

7

Lastly, we summarize and conclude the dissertation.

CHAPTER 2

RELATED WORK

In this section, we review a selected collection of prior literature relevant to the study

of rank aggregation in information retrieval and database literature. A great deal of

work on merging ranked lists from different sources concentrates on the problem of

finding an aggregation method that performs well in a specific scenario. For example,

in information retrieval, the emphasis is on finding the best way to incorporate

information about different features of text into the final ranking [92, 108]. The

results are usually evaluated with respect to typical text collections and their specific

properties. Similarly, rank aggregation methods in meta-searching for the Web

concentrate on methods to capture the input rankers accurately or suppress noise

due to possible spam [53].

These aggregation methods typically treat all the rankers uniformly and do

not try to capture the differences among them. There is no work to our knowledge

that evaluates different ranking methods based on how well they behave with respect

to the characteristics of their inputs. Our work tries to capture the relationship of

input rankers to a possible ground truth. This approach allows the user to choose

between different and contradictory objectives of capturing the input rankers closely

or disregarding outliers. We also show that outliers exist in two dimensions of noise

and misinformation with different implications on performance. There is no known

work that approaches this problem.

In contrast with the existing work, we estimate the possible asymmetry or

difference of opinion between rankers explicitly and use this in aggregation. There

is some work on learning user preferences with respect to the input rankers [3, 75].

These methods typically require extensive training data for each user that may not

be available in many cases. In contrast, we develop aggregation methods that do

not require any user specific training data. To our knowledge, there is no work that

attempts to estimate and use the amount of noise and misinformation in the rankers

in rank aggregation.

8

9

In the following sections, we give the detailed description of the related work

in information retrieval, web search and personalization of rank aggregation.

2.1 Overview of Web Search

Ranking and rank aggregation are common methods employed in Web search.

The information accessible on the Web is normally considered as a set of documents,

each document containing a collection of text and other media elements that are

linked to it. There are two main types of web documents: static and dynamic.

A static web page is structured in a narrative style with possibly additional nav-

igational elements. Generally, a link in a page carries an anchor text, which has

relevant information about the page. A dynamic web page contains information

that is usually extracted from a database upon request. Many dynamic web pages

are part of the “Deep Web” [19], which is not indexable by search engines.

Web documents are described using the textual contents as well as its location,

such as title, author, meta tags or body. The importance of a keyword in a Web

document can be determined by the stylistic elements including its font size and

type. Any dynamic properties of the Web site, update frequency, amount of time

it has been online or number of hyperlinks pointing to the page from the outside

world, are used to judge the quality of the Web page. Generally, the content and

the importance of a Web page are considered to understand its relevancy when

answering a user query against a search engine.

The structure of the Web is generally considered to be a graph G = (V,E)

where the Web documents are vertices (V) and the hyperlinks between two Web

documents are edges (E). This directed graph may have parallel edges between two

nodes in contrast with usual graphs. The structure of the Web is a lot richer in

practice, each document contains text as well as many other types of objects. The

part of the Web that is indexable by search engines corresponds to a subset of this

structure that can be referred to as a collection of documents with links between

them.

Since Web documents can be constructed by any person for any reason, the

size of this graph G is very large and growing constantly. In order to facilitate the

10

discovery of Web information, users can search the Web via search engines and meta-

search engines in finding the desired information. These engines normally allow a

user to enter a search query, comprising of at least one keyword, and locate the

Web documents that best match the search query and have the best quality. Search

engines and meta-search engines concentrate not only on relevance of a document

returned for the query, but also the underlying quality of the information that is

available.

With the possibility of multiple interpretations of keywords, search engines

have difficulty distinguishing which definition is desired and which documents to

return to the user. Some research on engines have incorporated clustering techniques

to separate and label the various meanings of the query. SnakeT [58] is a hierarchical

clustering search engine that organizes the query results such that the information is

easier to find for the user. The classification of a Web document is done through web

snippets. Labels or folders are constructed for the clustered Web documents based

on the common phrases observed. Their algorithm is able to construct a compact and

balanced hierarchy of folders that may be overlapping since Web documents can be

applicable in a number of settings [119]. Chakrabarti et al. [33] categorizes the query

results in a database by constructing a hierarchy of labels that the user can choose

to explore or ignore. The labels are organized automatically based on the contents

of the tuples in the answer set. The hierarchy is designed to be balanced in order to

minimize the information overload contained within each label. The authors develop

an extensive experimental methodology to examine the benefits of categorization

after defining the cost model and workload characteristics estimations.

The work in clustering search engine results has led to the emergence of

question-answering systems in which there exists a correct solution. The Tritus

system [2] is developed to transform questions to query phrases and learns how to

answer the questions.

2.1.1 Information Retrieval

The natural question in web search is how to retrieve documents matching

the keywords. This problem has many solutions developed into the research field of

11

information retrieval. However, it also offers many new challenges specific to web

searching. Information retrieval (IR) is a mature research area that aims to index

and search a large corpora of text, image and other media. It has foundations in the

late 1960’s with the work of Salton [108] for determining the relevance of documents

to keyword queries. IR systems aim to rank documents in a text collection based on

their relevance to a query. The models used range from those that view documents

as bag of terms to those that consider the narrative style based on natural language

processing. In more recent prior research has extended to the search of multimedia

documents and other forms of media such as images and video.

One of the widely used models for information retrieval is the vector space

model [92]. This model represents documents and queries as vectors in high-

dimensional space, in which each dimension denotes a word in the collection. The

answers to the query, in sorted order, are determined by a distance function, e.g.

cosine, influenced by the frequency count for the keywords in those documents Not

all words in a document are represented in the vector space model. A stop list of

English grammatical words such as and and the can be ignored since they have high

occurrences and does not have semantics contributing to the retrieval.

Relevance Feedback. The amount of information available in information re-

trieval systems causes users to have difficulty discovering the data most relevant to

the query. In some cases, users know exactly what information they are looking for

but the query does not represent their interests well. The user can judge the re-

turned results as relevant or irrelevant. Then, the system alters its ranking strategy

based on the user input, which better aligns with the user’s judgment. Feedback

can be given explicitly by the user, however it may be very difficult to obtain a

large amount of useful feedback, or implicitly through observing user behavior to

infer which documents are relevant to the user. Relevance feedback learns how to

answer these queries uncovering the appropriate results through the training data

and performing experiments on the testing data.

The original relevance feedback algorithm initializes the initial query with a

set of terms and relevance judgments. Allan [5] investigates relevance feedback

12

protocols under the assumption that there is a continuous arrival of documents,

queries are long-lived ,e.g. repeatedly executed, and the relevance of a document

is binary (either relevant or irrelevant). The author modifies the initial relevance

feedback algorithm by incrementally feeding back only a fraction of the training set

to the system. Each keyword that appears in the relevant documents are ordered

with respect to the number of times the keyword occurs in the relevant documents.

The re-ranking of the terms is computed using the Rocchio formula, which is wquery+

2 ∗ wrel − 1
2
∗ wnonrel where wX is the weight of the term for the query, relevant or

irrelevant documents. The Rocchio formula is used in lieu of other better performing

algorithms since it is simple and relatively effective.

Chakrabarti [34] introduces a method to improve relevance feedback for Web

documents by means of a measure called the Jaccard coefficient. The objective of

the Jaccard coefficient is to remove the duplicate documents in the query results.

The degree of overlap between two documents is computed as a ratio of the number

of shared keywords to the number of keywords processed. If the overlap is large,

then the documents are similar to each other and only one document needs to be

returned for the relevance feedback.

User feedback is also a key component for Beitzel and Lewis [17] who develop

a rule-based automatic classifier using preferences to categorized queries in order to

more efficiently and effectively retrieve results to users. In addition to user feed-

back, exact matching is also applied to return more accurate results that can not

be retrieved from using either method individually. The preferences are head-tail

pairs of keywords for disambiguation and easier semantic interpretation even though

query lengths are a short 2 or 3 keywords. Another approach to learning how to

rank objects is done by Bifet et al. [24], which conducts a statistical analysis using

logic regression, support vector machines and binary classification. The properties

of search engine results are collected in which the method of learning results are

compared to Google. Their results showed that the binary classification approach

categorizes the results correctly for both the training and all experiments; however,

the dataset was small and needs to be tested more extensively.

13

Inclusion of Personalization. The personalization of queries, and their answers,

is a way to discover and remember the results that are useful to the user at a

specific time. Personalization allows users to restrict their search space and direct

the retrieval. Instead of processing the query and allowing the user to further search

for the results aligning with her interests, the user’s preferences are considered as

well so the results are hopefully fewer and more accurate.

Personalization can be achieved through leveraging the implicit user prefer-

ences and re-rank the query results within a relevance feedback system [113]. A

study of search algorithms of a user’s past actions is done to personalize the cur-

rent web search. The targeted queries are those with many interpretations and

prior research relies on well-formed user profiles and well-defined representation of

knowledge. The authors investigate the corpus representation, user representation

and document or query representation. The corpus representation estimates the

total number of documents in the collection and number of documents that include

a specific keyword. The user representation estimates the number of documents

which relevance feedback has been provided and the number of these documents

that contain the specific keyword. The document or query representation is what

keywords are summed over. The performance evaluation used the measures defined

in [74], called discounted cumulative gain. The results conclude that the more data

used to represent the user, the better the answers. The richer document or query

representations also provides better answers.

An ideal ranking consists of an ordering of the highly relevant, relevant, and

irrelevant results where ties are broken using a ranking distance function or error

measure, such as Kendall-tau, that we will discuss in a subsequent section. When

a comparison of the web ranking, personalized ranking and ideal ranking, both

the web and personalized ranking are close to the ideal ranking but not to each

other implying that the web and personalized rankings are good in their own way.

The relevance feedback system gives personalization “freshness” since interests may

change over time but the corpus, user and document or query representations are

difficult to estimate and depends on the sources of the information.

14

2.1.2 Query-information need

Most search queries are simple list of keywords assumed to be connected by an

‘OR’ connective. Most search engines support more advanced search options ranging

from exact search phrase matching to other boolean connectives. The search results

are typically a list of web pages ordered with respect to their relevance. However,

some search engines distinguish resources that contain many useful links[114, 83].

It is also possible to create a summary of the search results by clustering them

into subject headings to help users locate the specific topic of interest from their

query [119].

Meta-search engines support the same type of queries as regular search engines

and may provide similar results. The main difference is that they may not have their

own index of the Web but access other search engines for their results. This has

the advantage of increasing the coverage over that of a search engine [122]. By

integrating the rankings of search engines, it is able to evaluate documents not

strictly based on the text content but also the similarities with other search engines.

One of the problems specific to Web searching is rank manipulation. The

notion of spam [47, 49, 59] or junk first referred to unsolicited emails and then

became synonymous with Web documents that appear relevant to a specific query

based on the ranking strategy but are judged irrelevant by users. Research has

concentrated on identifying spam either by the textual content, Web document

structure or by the structure of the Web graph surrounding the spam page. Fetterly

et al. [59] perform a rigorous statistical analysis of over 550 million Web pages by

recording information about each URL. Their results showed that some web spam

are machine-generated with easily identifiable distribution of in-degree and out-

degree from those of human-made Web documents. Most often sites manipulate

their page or site content to increase their prominence to gain a larger audience for

their site. Most quality judgments used by search engines are engineered to reduce

the probability of sites from achieving undeserved rankings such as [18, 110].

15

2.1.3 Link Analysis

Before discussing merging algorithms that are designed specifically for ranks

or relevance scores, we would like to discuss a general technique, called link analysis,

that has been used to organize the information returned by search engines. Link

analysis is a feature used in ranking for Web documents. The algorithms that make

use of link analysis treat the Web as a structured graph of pages, edges indicating

hyperlinks between documents. They make use of methods found in social network-

ing [94] for analyzing social structures, citations of documents and modify these

methods to judge the importance of a page by the number of pages that link to

it. These methods can be roughly classified into general webpage ranking [28] and

query-dependent ranking [83] methods. They rely on the social nature of the Web

assuming that if a webpage is useful, it is likely that many people will link to it. In

this respect, a link is treated as a vote for a specific page over all the others.

The PageRank [28] algorithm ranks all documents to compute a single impor-

tance value called the pagerank of that page. This measure models the behavior

of a random surfer when at a specific page either chooses among the links on that

page uniformly at random, or stops navigating and jumps to a page on the Web

uniformly at random. The probability of navigation α determines how much the

graph structure influences the PageRank values. If α = 0, then all pages have the

same PageRank value. If 0 < α < 1, then PageRank value is determined by both

factors. Kleinberg [83] instead proposes a query-dependent method. In this method,

first a query specific subset of the Web is constructed by querying a given search

engine on that topic. This method assumes that there are two types of pages on

the Web called hubs and authorities. A hub page contains links to pages with good

content (high out-degree) and an authority page contains useful information (high

in-degree). Hence, if a hub points to good authorities, then it is a better hub. Simi-

larly, if many good hubs points to a page, then it is a good authority. Based on this

self-reinforcing assumptions, a measure of hub and authority quality is computed

for all pages in the given subgraph. Since the graph is constructed for each query,

this is a more costly approach.

Both approaches to ranking have their strengths and limitations. Bharat et

16

al. [21] outline three prevalent problems associated with Kleinberg’s connectivity

analysis algorithm. The first problem encountered is the mutually reinforcing re-

lationships between hosts. The hub scores assigned to documents are based on

many interconnected documents linking to a single document. In the same man-

ner, some high authority scores are given since one document constructs links to

many interconnected documents. The Mutually Reinforcing Relationships Between

Hosts problem exploits a certain organization of documents that heavily dominate

the computation. The second problem is automatically generated links. Some Web

documents are generated by other web services and as a by-product the web service

will generate a link to itself from the the newly generated Web document. The

third problem concerns non-relevant nodes. The appearance of non-relevant nodes

tends to occur when popular documents are retrieved in the results but have little

connection with the query.

Similarly, it is generally hard to construct a topic-specific graph by following

the links in pages since the topic tends to shift quickly. In a more recent study,

Bharat et al. [22] propose their Hilltop ranking scheme for popular topics which

highly ranks the most authoritative pages on a query topic. The scheme operates

under the notion that the experts on a subject can be located, where an expert

provides unbiased recommendations and points to a number of documents with

maximal disjoint connected subgraphs on the query topic. Thus, the mutually

reinforcing relationships between documents would be minimized. These experts

are located during a preprocessing stage and become a subset of the documents

in the search engine’s index. A page is considered an authority if some threshold

number of experts on the query topic point to it. The results, in general, revealed

that a more detailed classification of authority documents returned the desired Web

document as rank 1. For the lower ranks, Hilltop performed similarly to one of the

commercial search engines.

Local link information, such as in [83], only retrieves and orders documents

associated with a specific search query whereas global link information orders doc-

uments based on the data collection first, such as in [28], then retrieves the relevant

documents accordingly. Calado et al. [32] examines and compares the use of local

17

link information to global link information when answering a search query. The

authors address the precision of the top-10 documents and show that the global link

information improves precision while the local link information improves precision

for documents ranked greater than the top-10, in the general case. The experiments

only consider the precision error measure and gains that can be achieved in the

number of common Web documents. The authors also compare combinations of

local and global link information from the content of the web documents. The re-

sults show that a combination of content-based and linked-based sources give better

retrieval results than using the methods individually.

SALSA (Lempel et al. [87]) is a stochastic version of the Kleinberg’s connec-

tivity analysis and prevents the effects of the mutually reinforcing relationships.

Borodin et al. [26] expand upon the work of Kleinberg and introduce a theoreti-

cal framework for link analysis ranking. The authors present several link analysis

ranking algorithms that are compared and assess of the quality of these algorithms

through an extensive experimental evaluation. The algorithms proposed in this

work provide a range of methods such as selecting the best hub or authority at each

iteration, Bayesian methods or a simple in-degree operator.

PageRank is an algorithm that has been heavily researched to address specific

issues and the research that proceeded the introduction of PageRank uncovers cer-

tain limitations of this algorithm and make attempts to resolve them. For example,

Topic-sensitive PageRank [65] constructs a number of PageRank measures for each

page in advance based on some pre-determined topics. Then, at query time, the

relevance of each topic to a query is determined and used to combine these mea-

sures. The authors also claim that the topic sensitivity can be used to reduce the

impact of heavily linked documents receiving a higher rank. Tomlin [115] compares

its TrafficRank algorithm, which represents the traffic flow (incoming and outgoing

edges) of the Web to determine the hotness or entropy maximization of documents,

to the PageRank algorithm. The documents with large amounts of “traffic” are

deemed to be important. The TrafficRank concentrates on the outgoing links while

the PageRank focuses on the incoming links. When examining documents that are

found deeper in the hierarchy (level 1 = /X/Y/, level 2 = /X/Y/Z/, etc), Traffi-

18

cRank produces comparable values to those observed by PageRank as more levels

are considered in the documents.

Eiron et al. [54] address the problem of dangling nodes or link rot associated

with documents that are linked to by other documents but have been moved or

no longer exist. The PageRank algorithm either disregards these nodes or assigns

an undeserved high PageRank value to these pages. To resolve this problem, a

penalty propagating backwards is applied for dangling links, hence decreasing the

importance of pages that contain such links. They also suggest variations of the

PageRank algorithm, called HostRank and DirRank, that assigns importance to

individual sites instead of webpages to address some of the issues associated with

the vulnerability of PageRank to manipulation of links. Other works on link analysis

can be found in [23, 89] where the stability of the PageRank values and the ranks

computed from these values are examined.

2.1.4 Evaluation

There are several evaluation techniques used to access the relevance of doc-

uments in both IR and Web search. The best methodology for evaluating search

engines is to perform experiments on the search engines themselves. Jansen et al. [73]

analyze logs of real user queries against the search engine Excite. The authors in-

vestigate a multitude of factors including the queries, sessions and keywords. Their

experiments reveal the mean number of search terms for a search engine (2.21) was

much lower than traditional information retrieval systems (7-15). In addition, users

only viewed the top-20 results in nearly 77% of requests. Queries that are not in-

dependent of each other should be viewed in tandem. The study also examines the

components of consecutive queries by the same user as well as keyword frequency.

Jansen et al. observe that Web search users are quite different from the traditional

information retrieval system users. The users of information retrieval systems are

usually aware of what information exists in the system and have a good idea of what

information they would like to retrieve. A Web information retrieval system needs

to be designed to cater to its search users.

The duration of a document in a search engine’s database provides a greater

19

likelihood of this document to be returned. Search engines also have to consider how

to assess document popularity, which is also strongly connected to the document’s

quality. In Cho et. al. [41], the research concentrates on identifying the impact of

search engines on the popularity and evolution of Web documents. In addition, the

researchers estimate the time needed for a new Web document to become signifi-

cantly popular by search engines. As an extension of this research, page quality [42]

is proposed as a new ranking metric that finds the high quality pages early in the

execution in order to remove the popularity bias. The quality of a page is measured

by the conditional probability that a user likes the Web document when observed

the first time. Since the page quality is difficult to construct, the current popular-

ity of the document where its popularity contributes to the estimation of the page

quality. The authors consider their page quality definition and estimator as a third

generation ranking metric with an emphasis on understanding the evolution and

change in the link environment. In another approach, Pandey et al. [100] examine

the effects of performing partial randomization of query results. The newly-created

but highly relevant Web documents are not viewed by users since the focus is on

the top-10 results. An algorithm then interjects a percentage of these newly-created

but highly relevant Web documents randomly in the result set and shows that new

pages will be located faster over the traditional link building method.

Assessing Quality of Rankings. The quality of rankings can be evaluated typ-

ically using precision and recall measures [108]. Both of these measures are well-

known methods in information retrieval literature based on the notion that the

documents that are relevant to a query are known in advance. Precision is defined

as the proportion of received documents that are relevant. Recall is defined as the

proportion of relevant documents that will ever be returned. Researchers capture

the precision and recall of a search query through a precision-recall curve. The ob-

jective is to have precision and recall both equal to 1. However, these two measures

generally require balancing opposite trade-offs. Precision and recall are the basic

foundation methods of evaluating search. However, most search engines target pre-

cision as their primary objective since the number of relevant documents is usually

20

too high for a user to process. TREC-style average precision (TSAP) as used by

Lu et. al. [91] considers the location of the relevant documents such that the ith

Web document receives a value of 1
i

if it is relevant, otherwise the value is 0. The

values are then averaged. TREC-style average precision is similar to precision but

incorporates the positional information.

Järvelin [74] introduces new evaluation methods, the cumulated gain and

cumulated gain with discount measures, and compare them with precision-recall

curves. The cumulated gain measure assigns a relevance score to each Web docu-

ment, which is the sum of ranks up to that particular document. The cumulated gain

with discount is a modified version of the cumulated gain measure that also incorpo-

rates a discounting function in the document’s score since a document becomes less

valuable if placed deeper in the ranked list. This discounting function is to divide

the document value by the logarithm of its rank. The case study demonstrates that

the cumulated gain-based measurements provide richer information for evaluation

and the tradition precision-recall curve, in which relevance scores are either 0 or 1,

may be too lenient and not able to properly distinguish relevant documents from

irrelevant documents.

Buckley [31] introduces bpref which makes use of the relevant documents asso-

ciated with a topic by computing the average number of documents that are ranked

above the set of relevant documents. They compare bpref with several variations of

the precision and recall measures and shows cases where it outperforms the tradi-

tional precision and recall. Bpref is developed for the cases when information is not

complete and considers incomplete and imperfect information.

Vaughan [118] tackles the definition of recall, which is a subjective measure

with many interpretations since the universe of relevant documents is unknown.

The discovery of additional relevant Web documents require deeper traversal of the

query results therefore adversely affecting the precision. Vaughan also proposes two

measures that are counterparts to the widely-used precision and recall. Vaughan’s

precision is the quality of result ranking, which is measured by the correlation be-

tween search engine and human ranking. The Spearman rank-order correlation

coefficient is computed, where the higher the correlation coefficient indicates that

21

the search engine ranking is closer to the human ranking. The Spearman rank-order

correlation coefficient [50, 51], also known as the footrule distance, is defined as

1 − ΣD2

N∗(N−1)
where D is the difference between an object’s ranks in two rankings

and N refers to the number of objects. Vaughan’s recall is the percentage of top

ranked documents that are retrieved. This modified recall makes an assumption

that a portion of the retrieved Web documents are relevant, then we can calculate

the top-K. This research assumes that the Web documents needed to accurately

compute the precision, recall or one of their variations is available to the search

engine for evaluation.

In addition to precision, recall and footrule, a popular method to evaluate

search engine rankings is through the Kendall-tau and footrule measurements. The

Kendall-tau distance compares two rankings and determines the degree of sorted-

ness. The Kendall-tau measure performs pairwise comparisons of the rankings where

a disagreement is assigned a penalty of 1 and 0 otherwise. Ideally, we would like to

have each document relevant to the query in its correct position. The objective is to

have the minimal number of disagreements between two rankings. A more elaborate

discussion of these evaluation methods will occur in a subsequent chapter.

The previously mentioned algorithms perform experiments on static result

sets and query logs. However, the content of the Web changes daily. This calls into

question the validity of the claims and observations over time. Bar-Ilan [11, 12]

conduct extensive experimentation of search engine performance on a weekly basis

and compare results to previous weeks. The results reveal how specific search engines

behave for the same set of queries on a weekly basis where the documents are no

longer viewed as static but may be altered over time, removed or newly introduced

to the search engine’s indexing system. The documents are analyzed over time where

properties are measured such as relevance, weekly precision changes and number of

forgotten or dropped documents. The tests did not provide significant insights of

search engines in a week-by-week comparison. However, the rankings on AlltheWeb

were, in general, stable during the weekly experiments. Google, on the other hand,

observed constant but local changes in the positional order of Web documents due

to the fluctuations of search engine’s index and influx of new Web information.

22

Interestingly, the number of overlapping Web documents was low; hence difficult to

perform a proper analysis.

Vaughan [118] uses human subjects to evaluate search engine performance by

balancing the precision and recall measures. The author compares human ranking

to rankings returned by a search engine. The use of human subjects comes with

the caveat that humans are not experts for all search queries where their opinions

are subjective in which the definition of an expert is ambiguous. In the case of

Vaughan, human ranking is time-consuming, where the human ranking is an agreed

upon rank of each Web document. The quality of result ranking indicates that

the correlation between Google and the human ranking was the best when using

the Spearman correlation coefficient. Google is shown to be the best search engine

for retrieving the most relevant pages in this study and has the most stable search

engine performance.

Assessing Availability and Cost of Retrieval. All the algorithms we discussed

earlier consider the ranked list are already in memory before aggregation. In the

literature [36, 57, 116, 30, 52], monotonic aggregation functions that incorporate

weights are used to represent different ranked lists. A monotonic aggregation func-

tion satisfies f(x1, x2, . . . , xn) ≤ f(x
′
1, x

′
2, . . . , x

′
n) wherever each xi ≤ x

′
i. However,

in some cases retrieving large ranked lists may be very costly. The following algo-

rithms approach this problem.

The medrank [56] algorithm approximates the median rank of a set of rankings

by first sorting the ranked lists with respect to arbitrary random vectors. Then,

these lists are read in sorted order and the median is calculated when the rankings

are found in 50% of the lists. The Threshold (TA) and No Random Access (NRA)

algorithms, which are improvements on Fagin’s Algorithm (FA) [90], operate on

systems where objects can be retrieved either with ranked retrieval or by directly

finding the rank or score of an object through random access or probing. Other

algorithms in this area are Quick-Combine [63] and Stream-Combine [64], which

are proposed to retrieve multi-feature objects efficiently and compared with TA and

NRA algorithms. The cost of Quick-Combine and Stream-Combine do not have an

23

constant factor upper-bound making these algorithms having a smaller amount of

flexibility and scalability.

The minimal probing (MPro) [36] algorithm addresses the case when a por-

tion of the ranked lists are accessible in memory while the other ranked lists are

not readily available. For instance, a ranked lists can be constructed using a user-

defined function, which is only accessible on a per-object basis. MPro first orders

the objects with respect to the rankings that can be directly accessed in a database.

Then, the objects are ordered with respect to the ranked lists that can not be stored

in memory. MPro is compared to the Onion technique proposed in [37] which forms

a hierarchical organization of the data and indexes using convex hulls. The Onion

technique provides significant speedup over a linear scan of the database. MPro

improves upon the Onion technique by reducing the computational overhead of

organizing the data in convex hulls and producing an algorithm that is more dy-

namic in nature. Marian et al. [93] analyzes the TA and MPro algorithms alongside

their own sequential algorithm, Upper, to maximize parallelism amongst different

databases to reduce query response time while minimizing the number of accesses

to objects. The Upper object allows for partial probing of objects by intertwining

random and sorted accesses and addresses the response time bottleneck for the TA

algorithm.

Other methods have been presented in [39] where the rankings can only be

accessed via indexes. The authors make use of filtering conditions for pruning ir-

relevant information and applying a ranking expression for ordering to the set of

acceptable objects. However, the work assumes only boolean expression in the filter

condition which are connectives of inequality statements. Tsaparas [116] describe

an index structure for pruning the tuples in a database join with respect to top-K

queries of monotonic linear combination functions. Bruno et. al. [30] develop meth-

ods to estimate an approximate range for nearest neighbor queries using histograms.

This work uses a p-norm function to determine how close an object is to a query

and adjusts the algorithm to the given workload.

Hristidis [67] created the PREFER system which materializes views over a

set of documents to be ranked using weighted linear preference queries. One or

24

several views can be merged to construct an answer for a query. This approach is

not practical in cases where the data is highly dynamic. Later, Hristidis et al. [68]

expanded the PREFER system and investigate other methods to compute preference

scores in queries using (1) the linear combinations of source attributes, (2) the

linear combination of monotone function and (3) the cosine function. Babcock and

Olston [10] addresses top-K processing in a distributed environment, where data

streams incur the high costs due to the number of transmissions and a reliance of

a central repository. The authors propose a scheme that stores a certain ranking

given the observed values from data streams for a given time window. Wechsler

et al. [120] devise a ranking algorithm which minimizes the response time. This

branch-and-bound algorithm is implemented to reduce the transmission time and

inspection time needed to process video and audio data formats.

The algorithms discussed above consider documents that were outside of a

database. However, the database does not need to just store the information but

can be queried and return a ranking. A set of database operators, rank-aware

operators, are developed to perform the appropriate classification of the information

stored in the database. Ilyas et. al. [70] introduce a rank-join operator that conducts

only sorted accesses and develop conditions for early returns if no other object can

produce a higher score. J* [99] is presented for executing top-K join queries with

user-defined rankings and also assumes only sorted access. Ilyas et al. [72] compare

their hash rank-join operator and J*, Ilyas et al. [71] outline a pruning methodology

which estimates the input cardinality for query optimization techniques to their

hash rank-join operator. Bruno et al. [29] also present models for ranking objects

in a database by using conditional selectivity of the statistics.

Since documents can be stored outside or inside a database, caching can be

used to reduce the cost in both cases. The basic problem with caching is deciding

what to cache and how long the cached data should remain. Chaudhuri et al [38]

addresses the Many-Answers problem as a result of a database query retrieving

many query results and proceeding to rank these results based on their properties,

which looks at both a global score and a conditional score. Saraiva et al. [109]

combines two types of caches: cache of query results and cache of inverted lists.

25

These schemes store rankings associated with a given query, in the case of the

cache of query results, or a given keyword, in the case of the cache of inverted lists.

The eviction from these caches remove all related objects. The cache of inverted

lists consists of equal byte-sized pages which are stored portions of the keyword’s

inverted list but due to the equal pages, more objects are stored than requested

(case of indirect prefetching). Lempel et al. [88] group the results based on the

result pages where result page 1 has documents 1-10, result page 2 has documents

11-20, and so forth. The grouping of 10 documents on a result page neglects these

documents’ independence with respect to different but similar queries. Documents

are prioritized based on the query topic and entry time frame.

2.2 Merging Algorithms

The merging of information from different sources appears in other areas of

computer science such as robotics and machine intelligence, called sensor and data

fusion. Sensor fusion is a method of integrating data given by a set of sensors in

order to obtain good estimates of a dynamic system’s states. Sensor and data fusion

is similar to the meta-search problem in the challenges of identifying, retrieving

and interpreting data. Sensor networks have the ability to process the data at a

sensor before it is sent through the network while meta-search only considers each

document’s relationship to the other documents e.g. whether or not there is a

direct link. Multi-sensor fusion provides coverage of an area using many sensors.

The data at these sensors can be merged or fused together to give a consistent

and understandable conclusion. A number of strategies address specific issues in

multi-sensor integration for a range of applications including artificial intelligence

and military operations, which are reviewed by Abidi and Gonzalez [1].

Klein [82] reviews algorithms and architectures that detect, classify and iden-

tify sensors’ information transmitted through the network. The three main ap-

proaches to capturing the information obtained by the sensors are classical infer-

ence, Bayesian Inference and Dempster-Shafer evidential theory. Classical inference

models uncertainty using uncorrelated random noise. Bayesian inference better de-

fines uncertainty through using previously retrieved information in order to better

26

estimate the likelihood and probability of error. The Dempster-Shafer evidential

theory, on the other hand, models uncertainty with the belief in one or more propo-

sition, including ignorance. This theory incorporates degrees of belief and allows

for the unknown which is not present in the other models. These methods typically

require a large amount of prior information in order to provide useful estimates and

inferences.

Data fusion on the Web has been researched in Tsikrika and Lalmas [117].

Their objective is to compare five merging techniques and maximize the precision.

However, their merging methods assume that the title and summary information

is accurate and recently updated. The Dempster-Shafer method is applied but

it can only merge two bodies of evidence at a time therefore making the outcomes

dependent on the order of the merging. Both these merging methods do not consider

the existence of incorrect data or spam.

2.2.1 Overview of Meta-Search

Meta-search engines leverage the content from individual search engines by

increasing the coverage of the Web and answering the queries more accurately. Fus-

ing search engines have several issues. These include the following: search engines

only provide ranks (but not relevance scores) and the documents existing in each

search engine’s database may not be the same. The three main components of

a meta-search engine are resource description, resource selection and result merg-

ing. Resource description provides information about the contents of individual

databases. Resource selection chooses the set of databases to be used for search

and retrieval. Result merging, which is the focus of the thesis, is the procedure

for collecting the data from the individual databases and merging the results into a

consolidated ranking.

Resource Description. Resource description tries to obtain an accurate model

or representation of the databases of different search engines. This area of research

typically deals with crawling the Web for new reachable documents that may better

satisfy users information needs or updating existing documents that are stored in

the search engine’s database. Search engines crawl the Web to index data at a

27

centralized location and use this for search queries. The performance and cost of

crawling the Web can be time-consuming and expensive based on the number of

documents retrieved and the number of local search engines accessed. Due to the

largeness of the Web, accessing all Web documents is impossible in the absence of

an appropriate link structure. In meta-searching, these representations can be used

to better select which search engine’s databases is more adapt to contain relevant

documents.

Craswell et al. [48] is one such example that proposes a selective meta-search

engine that is a hybrid approach to crawl Web documents. The selective meta-

search engine sends the query to several satellite servers to reduce the query time.

The objective is to have the servers that can answer the query. Their experiments

show applications where traditional local search engine Web crawling, traditional

meta-searchers adopting the search engines results and selective meta-searchers are

the cost effective choice.

Resource Selection. Meng et al. [95] incorporates the possibility of hundreds

of thousands of scalable search engines. They devise a new database selection

method that only computes the similarity of the most similar documents in each lo-

cal database and forms a representative for all databases to represent the collection

of databases. Then, the algorithm can determine which databases are most likely to

contain the top documents to be returned to the user. A series of experiments are

performed to evaluate the percentage of correctly identified databases, percentage of

correctly identified documents, database search effort and document search effort.

Their new database selection method is showed to be scalable in both computation

and space.

In other research efforts, Wu et al. [121] also concentrate on the problem of

developing a scalable meta-search engine. This meta-search engine constructs an

integrated representative method for the databases using the similarity of the most

similar documents. Their method stores a fixed number of documents for each

keyword regardless of the number of databases that it appears. The results show

that the integrated representatives is highly effective in correctly identifying both

28

the databases and documents. The number of databases and documents searched

is also bounded within a factor of 2 of the number of documents requested by the

user.

Pon et al. [101] proposes a framework for ranking data sources using a learning

model for data source accuracy by comparing data source behavior to determine the

best k data sources. A cohesion function is defined which determines the accuracy of

the data sources by observing how well the data sources agree with each other. Once

the ranking of the data sources is complete, the best data sources can be selected

to answer the meta-search query by maximizing the precision and recall. Other

database selection algorithms are found in Powell and French [102] and Andritsos

et al. [8].

Result Merging. With models of how to represent and select the necessary

databases through resource description and selection, the challenge is how to pro-

duce a final ranking from the individual ranked lists returned from these databases.

The method to merge results from multiple ranked lists (from a single database or

from multiple overlapping databases) has produced many algorithms, such as [9, 62,

97, 111, 112], that fall into two main categories: ranked-based and score-based. For

a general overview of other meta-search engine research, see Meng et. al. [96].

2.2.2 Rank-based Merging

In many systems where the aggregators have no access to the internal scores of

the documents for a given query, rank-based merge methods must be used. We ob-

serve in the literature that aggregation methods are developed using a non-learning

(static) or learning approach. We now describe methods for each approach.

Non-learning approaches. Borda’s method [25] derived from voting takes the

position i of objects in a list of top-K objects and assign it K − i points. The

points are then added for each object to find the final ranking. The results are

equivalent to taking the average of the rank values. The objective of Borda’s count

is to provide an unbiased representation producing an aggregate ranker where each

ranker is treated equally. Each rank aggregation method begins with some set of

29

initial rankings in order to determine the most relevant objects. The next stage is

to determine the order of these relevant objects. Many of the following algorithms

try to find a ranking that minimizes the total Kendall-tau distance to the input

rankers. We first discuss the algorithms presented in Dwork et al. [53] and Renda

et al. [104] in which the final ranking is constructed using Markov Chain models.

Then we describe a series of heuristic algorithms introduced by Chin et al. [40] and

Beg et al. [16]. Lastly, we review the RankBoost algorithm [61] that differs from

the other algorithms in that it is based on a learning framework and forms a good

ranking from a weak set of rules.

Dwork et al. [53] claim an aggregate ranker with the lowest total Kendall-tau

distance models a consensus ranker. They claim the consensus ranker has the ability

to reduce spam since a junk page is unlikely to have a high rank in a majority of

rankings. Since computing the Kendall-tau optimal ranking is NP-hard, they in-

troduce four Markovian Chain methods (MC1,MC2,MC3,MC4) that approximate

the Kendall-tau optimal ranking. Each chain has documents returned by rankers as

states and transitions are based on the ranking of objects in the input rankers. In

MC1, the next state is chosen uniformly from the set of documents that are ranked

higher than the current document for all rankings. In MC2, the next state is selected

by first choosing a ranking that ranks the current document and randomly transi-

tion to a document that is ranked higher. The Markovian Chain MC3 is similar to

MC2 except that the next state can be selected uniformly and a transition occurs

if the next state is higher ranked than the current state. In MC4, the transition

occurs if the next state is ranked higher for the majority of rankings. In addition

to the Markovian Chain methods, the Local Kemenization method is introduced,

which begins with a ranking, e.g. any one of the Markovian Chain methods, and

then performs a series of adjacent swaps as long as the Kendall-tau distance re-

duces. These rank aggregation methods are compared with the Borda’s count and

methods that optimize for the footrule measure. The authors suggest that spam

documents appear in the final ranking if a majority of the input rankings include

the bad documents. In other words, garbage in leads to garbage out.

Renda et al. [104] perform a more extensive study of the Markov chain methods

30

presented by Dwork et. al. [53]. In addition to constructing the aggregate ranking

using the Markov chain methods, the several score and rank normalizations are

performed for each object for every ranking where the normalized weight of 1 would

be received a rank of 1. The frequency of each object in the rankings is computed.

Markov chain methods perform better than the rank normalization methods. MC1

and MC4, in general, perform better than the other Markov models.

The problem of finding a ranking that minimizes the total Kendall-tau dis-

tance can be reduced to the minimal feedback arc set problem as shown in [14].

Ailon et. al. [4] develop the FAS-Pivot algorithm and its variations that solves

the minimum feedback arc problem. The FAS-pivot algorithm is identical to the

Condorcet-fuse algorithm [97]. Condorcet-fuse represents the ranked information in

a graph where the weighted directed edge orders two documents based on the order-

ing in the majority of the rankers. The algorithm merges this information by sorting

the documents using quicksort. Other algorithms for solving the FAS problem are

introduced in [106] where the graph is partitioned recursively to maximize the cut

between two subgraphs. Aslam et al. [9] introduces the Borda-fuse algorithm, which

is based on a voting scheme. The algorithm assigns a certain number of points

for each rank position. The object that receives the most points from the different

rankers wins the voting election. Borda-fuse is similar to Borda’s count; however

unranked objects are assigned some points while in Borda’s count gives unranked

objects zero points. Condorcet-fuse is shown to outperform Borda-fuse in [97].

In the special case of federated systems where searching is performed on a

variety of sources including database systems, Khoussainov et al. [79] address the

challenges of federated web search by concentrating on the organizational dynam-

ics through learning techniques for topic-specific search engines. Their model is a

decentralized management of the various resources that incorporates an economic

framework. The objective is to optimize the effectiveness of the search engines and

the meta-search layer where the aggregated results are best-suited for the query.

Learning approaches. The relevance of an object may also be learned implicitly

through using historical information or explicitly using human subject studies. We

31

mention several works that use human subjects to rank objects and other learning

models that tries to infer the ranking in the presence of training data. The study

in [75] tries to identify the relevant documents by recording this data for a specific

user. The clicked web documents provide ample information in distinguishing the

more relevant Web documents from the others returned by the search engine. This

work shows that by using these preferences, the system is able to learn the factors

that are most relevant to a user in ranking documents. Amento et al. [7] also set

up a small-scale user study comprising of several experts for a set of popular search

queries. The objective of the study is to understand how the rankings match human

opinion using in-degree, out-degree, PageRank and Kleinberg’s authority and hub

score. Similarity and correlation among the Web documents is described by using

footrule and Kendall-tau for the top-5 and top-10 Web documents. The conclusions

indicate that the in-degree metric performs just as well as the more complex PageR-

ank and Kleinberg approaches. The experts ordered the Web documents with some

consensus but not enough to warrant a decisive conclusion.

Cohen et al. [44] addresses the problem of ordering rankings using ranks, user

feedback and a learned preference function. A two-stage approach is outlined to learn

how to order objects given a set of rankings by first learning the order relationship

between each pair of objects and second to maximize the number of agreements to

the relationships produced in the first stage. The ordering of every pair of objects

is learned by minimizing the disagreement between the user feedback and the cur-

rent preference function. Each ranking initializes its own preference function for

each pair of objects where each preference function is weighted equally; however

as convergence occurs, the impact of the user feedback modifies the weight of each

preference function. Two greedy and one randomized algorithms are introduced, in-

cluding a topological sort greedy algorithm using user feedback, as approximations

to maximize the agreement amongst objects with respect to the learned preference

function.

The Bayes-fuse algorithm [9], presented alongside the Borda-fuse algorithm,

computes the probability of relevance and irrelevance for each object in each ranker.

This algorithm makes the assumption that the ranks assigned to a given relevant doc-

32

uments in two different rankers are independent. In order to compute the relevance

of an object in the final ranking, we sum the log of the ratio of these probabilities

for all rankers. When the input rankers are more diverse, the Bayes-fuse algorithm

would be a better choice over the Borda-fuse or CombMNZ algorithms.

The cranking model [85] proposes a generalized variation of Mallows model

that aims to order objects, e.g. web pages, according to their input rankers through

estimating each object’s rank. The maximum likelihood estimation approach is used

to learn the proper settings for the location parameter (π) and dispersion parameter

(Θ) given a set of partial rankings. As a result, the expected rank of each object

can be calculated and a final ordering of the objects can be returned to the user.

Cranking aims to build probability distributions over the input rankers to minimize

the rank rate, which is defined as the average of rank of the correct page. In a

realistic setting, the correct ranks are unknown and impossible to obtain. The

experiments assumes that there exists correct pages to answer the queries and the

search engines (rankers) have these correct pages.

The Condorcet criteria states that if an object is ranked ahead of all other

object by the majority of voters (or rankers, in our case), then this object is the

winner. This winning object may not exist if at least two objects have a different set

of majority votes. The extended Condorcet criteria says that if the set of objects

can be partitioned such as one subset are ranked above the objects in the other

subset, then the first subset should be declared the winner.

Coherence [40] is a heuristic rank aggregation algorithm using a weighted ver-

sion of the extended Condorcet criteria and optimizes the final ranking with respect

to the Kendall-tau measure. Weights are placed on the objects based on which

ranking it appears. An object oi is ranked above an object oj if oi has a higher value

(object rank times input ranking weight) than oj in a majority of the rankings. The

consensus ranking is further optimized using a modified version of the Local Kem-

enization [53] optimization. But instead of only performing adjacent swaps, their

algorithm allows for swaps of neighboring objects while maintaining the weighted

extended Condorcet criteria. The adjustment procedure initializes with one object

that has the greatest likelihood of having rank 1. With each new object added

33

during the adjustment procedure, a new ranking is formed, including the new ob-

ject, while maintaining a consistent ordering. The authors then apply Coherence

to a polynomial time approximation scheme (PTAS) in order to assign the optimal

rank to each object. The PTAS tries to learn the best placement of each object by

repetitively sampling objects and computing the probability of each object having

the optimal placement.

Beg et al. [16] propose a rank aggregation algorithm which optimizes the

footrule measure by minimizing the distance between each input ranking and the

aggregate ranking. Their genetic algorithm (GA) uses reproductions, crossover and

mutation to construct the combined ranking through a user-defined number of itera-

tions. For reproduction, the set of valid permutations are evaluated in turn and only

the orderings that gives a lesser value are retained. The crossover model decides

to exchange a group of the first K objects for a pair of rankings only if the new

rankings remain valid permutations. The mutation technique will randomly swap

the “to be mutated” object with another object. Other soft computing methods

that incorporate fuzzy information are presented and compared. The membership

function ordering (MFO) assigns a rank to each object based on the maximum value

of the mean and variance of the object’s positions. The mean-by-variance (MBV)

constructs a ratio of the mean and variance of each object in order to avoid loop-

holes in MFO. The entropy minimization technique uses an entropy equation for

a particular region that moves a threshold value between upper and lower bounds

until the minimum entropy is located. When comparing the Borda’s count and

GA, GA produce the better results with a low number of iterations. When com-

paring MFO, MBV and entropy minimization techniques, the entropy minimization

method revealed to be the best performer in the aggregate distance and execution

time, following the Borda’s count.

Freund et al. [61] presents a formal framework for learning how to accurately

order documents by combining their ranking functions. Assuming the a priori knowl-

edge of the relative ranking of individual pairs of objects, the RankBoost algorithm

uses the input rankers and a feedback function to determine an accurate ordering of

each object pair. Each iteration of the algorithm emphasizes different aspects of the

34

training data and a weak learner that produces a weak ranking. The weak ranking

can then be updated to find the optimal location of each object. The aggregate

ranking is a weight combination of the weak rankings. Their work is not concen-

trated on the scores or ranks assigned to the documents, only the relative order and

describes how to determine a good ranking given good feedback. The results show

that the RankBoost algorithm was able to locate highly accurate prediction rules.

RankBoost also maintained its good performance with varying dataset sizes.

2.2.3 Score-based Merging

When scores are available from individual rankings, they can be used to provide

more effective aggregation methods. In some cases, scores from search engines may

not be available but additional scores for each ranked object can be obtained by

the meta-search engine at query time. As done in Section 2.2.2, we discuss both

non-learning and learning approaches for aggregating scores.

Non-learning approaches. The Borda’s method [25] cannot be applied for scores

but mathematical functions of average, minimum, maximum or weighted versions of

these methods can be used depending on the objective of the user. Rank aggregation

methods can also use one of these mathematical formulas but the domain of the

ranks for each ranking is uniform while the domain of score-based rankings do not

fall into a fixed interval.

Lee [86] examine several static score-based methods that makes use of mul-

tiple resources through constructing a final ranking based on a linear combination

approach. The algorithms include: the CombMIN, CombMAX and CombSUM al-

gorithms which construct the final ranking according the the minimum, maximum,

summation of the object’s scores in each ranked list. The CombANZ and CombMNZ

are variations of the CombMNZ algorithm that produce the aggregate ranking by

dividing or multiplying the number of ranked lists the object appears by the Comb-

SUM value. Since score values can be duplicated, a normalized similarity value is

computed based on the minimum and maximum values observed in the ranking.

Without similarity normalization, the CombSUM method produce the best average

precision. With the similarity normalization, the CombMNZ method gives similar

35

or better average precision results over CombSUM. Their work shows that different

rankings contain the same set of relevant Web documents but a different set of ir-

relevant Web documents. The CombMNZ is generally considered the standard for

static score-based algorithms as it is used as a baseline algorithm in many of the

work described below.

Renda et al. [104] compare rank and score-based aggregation methods. A z-

score and score normalization methods are also constructed. When based on scores,

the performance evaluation show that frequency counts have little bearing on the av-

erage precision results. The z-score normalization outperforms score normalization.

The score normalization using the number of times an object appear in different

rankers wins the majority of the tests. The Markov chain models [53] and score nor-

malization methods produce comparable performance result contrary to the popular

assumption that score based methods are better.

Motro et al. [98] consider that the ranking or fusion of data is flawed with

respect to assessing the usefulness of data originating from multiple sources. They

present a utility function that is based on the performance of the sources including

the features of recentness, cost, accuracy, availability, priority and quality of the

data. The objective is to maximize the utility function, which is a linear combination

of features and the weights assigned to each feature. The research outlines how to

formally represent the features and constructs, several empirical examples of how the

features can be used to determine the ranking and/or fusion of data. The features

and associated values are assumed to be accessible for evaluation purposes which

may not be the case in a real-world situation.

With data coming from news sources, Rasolofo et al. [103] introduce a method

that handle the challenges of frequently updating Web documents. The baseline

meta-search strategy is a ranking function that uses a round-robin approach to cre-

ate the final results ranking. Additional information used to rank results include

a generic document scoring function that assigns a raw score to each document re-

gardless of its source based on the number of matching keywords in the document,

the number of keywords in the query and the length of the Web document. The

generic scoring function may also incorporate the document title scoring or docu-

36

ment summary score, blended scoring function of the document title and summary,

document date, server usefulness or content-based scoring that requires the full text

to be downloaded and stored. The experiments concluded that a blended scor-

ing function based on the document information outperformed the round-robin and

content-based scoring.

Learning approaches. Si and Callan [111] consider merging results in a dis-

tributed environment. A query-by-query tuning approach on the results merging

function is taken to convert the database-specific scores into an approximation score

that can be adjusted. In an extended version of this work, Si and Callan [112] develop

a learning algorithm that maps the database-specific document scores to database-

independent document scores. As queries are posed to the selected databases,

the centralized database is also receiving the queries and updating the database-

independent document scores of the returned results. The main premise of the

research is to construct a merged ranked list of documents that could approximate

the final ranked list as though the databases were stored collectively in one single

large database.

Gravano et al. [62] presents the TOP algorithm, which explores result merging

from heterogeneous data sources with the use of a metabroker. The metabroker

serves as a centralized system that accepts the query, obtains the relevant data even

if it is not ranked highly on the data sources and organizes the results. The algorithm

considers each ranker as an attribute to the query in which the objects are ranked

only according to one criteria. The objective is then to learn the optimal weight of

each ranker to satisfy the query posed by the user. The stop condition occurs when

the target weight for each ranker is achieved within a given threshold. However, the

TOP algorithm can not guarantee efficient execution since a large portion of data

may be retrieved.

2.3 Preferences and Personalization

The merging algorithms makes an assumption that documents can be reduced

to a rank or relevance score and the documents with high rank or relevance score

37

matches the users needs. The main issue is that users information needs vary. Users

pose a query to an engine with the expectation of retrieving self-defined relevant

documents. However, the determination of relevance may not be binary for a user,

as well as, relevance is undecided for some (or most) documents.

Quantitative evaluation of documents or objects occurs when relevance is

formed numerically through ranks or scores. The goodness of objects is based on

a scoring function, which is a mathematical formula that maps the properties of

the Web information to numeric values. The other method for understanding the

relationship between Web information is qualitative. The qualitative approach does

not make use of scores for the data but instead assess the relative relationship be-

tween documents with inferences and deductive reasoning. Users tend to use the

qualitative approach in order to express their interests. The use of scores is counter-

intuitive to users since the data is viewed as independent components in the scoring

function calculations. But, users tend to think in terms of categories such as “Per-

son X likes A better than B”. User preferences are defined as a series of statements

that used in unison with individualized needs. The objective of user preferences is

to personalize the search results to the specific needs of the users. Furthermore,

preferences can also be used to evaluate the quality of rankings. We discuss the two

types of preferences, representation of preferences and the role of personalization in

the literature.

2.3.1 Types of Preferences

The types of preferences can either follow a strict or fuzzing ordering of the

objects or objectives. Strict ordering sets one object as better or worse than another

object. A fuzzy ordering is more flexible than strict ordering by allowing equality

such as “A is just as good or better than B”. A total ranking of object occurs when

a strict or fuzzy ordering includes a statement for every pair of objects. A valid

ordering can be formed if the statements are not conflicting such as “A is better

than B” and “B is better than A”. In either case, there is the issue of incomplete

information. The statements defining the relationship between each pair of objects

may not be available since the user may not supply them, has not made a decision

38

about the order or does not care about the order.

The work in [3] examine on how to express and combine preferences that

capture the choices of a broad scope of users. Each entry in the search query

contains a specific element or the wild card (*) element which indicates that the

user accepts any value for this element. The preferences are combined and becomes

numeric scores and then sorted in ascending order. In the case when the preferences

are undefined or unknown, the preference can be generalized to include only the

known user interests. The problem with using numeric values is that users do not

identify their interests by numbers but by determining the relationship between each

pair of preferences.

Ross [105] delved into fuzzy ordering where rankings represent Gaussian dis-

tributions with different mean values. The dependence amongst the objects are

assessed through pairwise comparison. Given two objects, x and y, and some com-

parison function c, a matrix can be constructed for each pair of objects where

c(x, y) 6= c(y, x). The pairwise comparison offer better representation of the objects

with less sensitivity to bias. The benefit of these approaches is also its primary

drawback, which is the lack of expressiveness of data. The information is repre-

sented are numeric scores. Numeric scores allow for easy comparison; however the

cause of the actual distinction among tuples is removed.

Strict ordering is considered in [80], where preferences are modeled in terms

of the intuitive ’better-than’ scheme that is called strict partial orders. Preference

terms are proposed and defined in order to capture the user’s interest such as the

AROUND and BETWEEN preferences. The resulting preference algebra addresses

many intricacies of preferences but the use of this approach is not straightforward

and it is not flexible to the construction of new preference terms. The algebra cannot

handle objects that are equivalent or contains indifference. Kiessling [81] extend the

preference algebra to deal with equivalent and indifferent objects. Holland et al. [66]

mine preferences using this preference algebra by recording the frequency of a value

and defining numerical and categorical data-driven preferences. The complexity of

preference mining is discussed to be polynomial-time with regard to their domain

size but the experimental evaluation only considered only two to six preferences

39

where numerical data domain is 200 values while categorical data domain has 20

categories.

2.3.2 Representation of Preferences

Preferences can be represented as operators [15, 20, 35, 43, 80] or, in the

simplest form, numeric values [3].

Chomicki [43] propose embedding preference formulas in relational databases

using the winnow operator. The winnow operator returns the best match to the

given query and subsequent top objects are retrieved by multiple executions of the

winnow operator. Independently, Kiessling [80] developed another operator that is

similar to winnow, called the Best-Match-Operator (BMO). The theoretical founda-

tions of preference constructors are discussed with definitions and structure to how

to efficiently process preferences. These constructors can be issued in conjunction

of each other and/or prioritization of at least two preference formulas. Most impor-

tantly, due to the fuzzy nature of preferences, the author concludes that the inter-

mediate stages do not suffer from the flooding problem, many potential candidates

for top-K which are subsequently disregarded. As with most preference formulas,

the operator serves as a filtering technique which returns top candidates, sometimes

more than one Web document, that can be ordered. If the operator returns K ′ < K,

then the operator performs another execution with a new answer space excluding

the previous results. The winnow operator does not impose restrictions on the pref-

erence formulas as in BMO. The winnow operator have more expressive power and

can represent user interests in better detail. The Skyline operator [27] retrieves the

set of objects in a relational table that are not dominated by other objects. Both

winnow and BMO can be used to express preference queries and a generalization

of the Skyline operator. Another limitation of the Skyline operator is its handling

of partially ordered attributes, which is addressed by Chan et al. [35] by devising

algorithms to exploit the index structure of the data. Other research such as [15, 20]

has concentrated on handling multimedia preference queries.

A step in the right direction is concentrating on properly understanding how

to construct preferences so they can be discovered by an information system or

40

database but still be intuitive to users. Holland et al. [66] models preferences as

strict partial orders. Algorithms are presented to automatically mine the strict par-

tial orders. These preferences can be numerical, categorical or a combination. The

numerical preference categorization are defined as upper and lower bound frequency

counts with a fixed error interval. Histograms are used to efficiently estimate the

density of the numerical preferences. For categorical preferences, the upper and

lower bounds are clear since a user will like or not like a property. The k-means

clustering algorithms is implemented to group the categorical preferences. In the

evaluation of preference mining, precision and recall are the performance measure-

ments with precision at about 60% while recall is set lower at 20-40% depending on

the type of preference. When investigating the runtime of their model, the numerical

preferences mined the fastest, then the categorical preferences. The explicit prefer-

ences, well-defined preferences, is time-consuming and almost linear in the number

of tuples.

Query personalization, a process of dynamically enhancing a query with user

preferences, is addressed by Koutrika and Ioannidis [84]. A personalized answer

is based on K of the top preferences from the user profile that should influence

the answer and at least l (l < K) preferences that are satisfied. A general model

is proposed that combines expressiveness and concision. A degree of interest for

each query is defined given the user preferences satisfying the profile’s values. The

preferences may be positive, negative or indifferent. A user’s concern is captured

by the presence or absence of values. The elasticity of preferences may be exact

or elastic depending on the numerical or categorical nature of the values. The

personalization of query results is constructed through a personalization (acyclic)

graph that connects relation nodes and attribute nodes with selection edges and

join edges. This graph is constructed and maintained according to the degree of

criticality using their FakeCrit Preference Selection algorithm were all edges are

assigned the maximum weight in order to reduce the storage and maintenance costs.

Another algorithm, Progressive Personalized Answers, is presented that generates

ranked, personalized and self-explanatory answers. The experimental evaluation

shows the benefit of both of these algorithms and the effectiveness of personalized

41

searches over non-personalized searches.

CHAPTER 3

BASIC CONCEPTS

This chapter presents the definitions of the terms used in this thesis. We first

describe the search problem and the result ranking problem. In Section 3.2, we

review the performance measures used as comparison tools to evaluate the quality

of the rankings.

3.1 Terminology

Suppose there are n objects denoted by O = {o1, . . . , on} that exist in a

database and can be queried. Each object oi has content and a set of properties or

features, denoted by f1, . . . , fm. The features are positive scores that correspond to

the relevance of the object for a specific criteria. For example in a web searching

application, objects can be referred to as web pages and features can be keyword

occurrence, recency of web page update, or retrieval frequency. A search query Q,

is an information need, normally expressed by a set of keywords, e.g. words or

phrases. Features may or may not be query specific. A search engine or ranker

assigns a positive weight wi to each feature fi from an object o ∈ O. The weights

w = 〈w1, . . . , wm〉 constitute the weight vector of this ranker. Rankers normally

contain (or index) a subset of O. We write o ∈ r to denote that object o appears in

a ranker r. The set of all objects indexed by the ranker r constitutes its database,

denoted by DB(r).

Given a search query Q, a ranker estimates the values for each feature fi of

an object o ∈ r that it indexes. The value of each feature fi is denoted by o.fi.

Note that in the following discussion, we will assume that the query is fixed for a

specific test for a set of rankers and hence we will not specify the query explicitly

unless it is necessary. The overall score score(r, o) of the object o for ranker r on

a query Q is then given by a function over its features and the weight function

of the ranker. One possible function is the linear combination function given by

score(r, o) = w1 ∗ o.f1 + . . .+wm ∗ o.fm. Generally, all features have values between

42

43

0 and 1 and the weight vector is given by w1 + . . . + wm = 1. The scores given

by each ranker also take values between 0 and 1 where 1 refers to the best match

and 0 refers to the worst match. The scores are sorted in descending order. The

scores can then be translated into ranks of monotonically increasing integers. Let

rank(r, o) denote the rank of object o in ranker r with 1 being the highest rank. If

object o is not indexed by r, then both score(r, o) and rank(r, o) are undefined for

this object. If DB(r) consist of all the objects in O, then it is referred to as a full

list ; otherwise we call it a partial list. We will also refer to partial lists as rankers for

uniformity. We will denote the partial list consisting of the top-K ranked objects of

ranker r with [r]K .

Given as input, a set of rankers {r1, . . . , rs}, the aggregate is ranker rA of

objects in DB(r1)∪ . . .∪DB(rs) based on their ranks or scores in {r1, . . . , rs}. The

rank aggregation problem is finding an aggregate ranker that optimizes an error or

performance measure, which we discuss in Section 3.2. The rank aggregation can

be performed on the rank values or scores based on the availability and reliability

of either type of information. The choice of using the scores or ranks can impact

the quality of the aggregation when constructing the ranker. When ranks are used

instead of scores, some information is lost due to the difference between scores that

each rank represents. Suppose the score distributions for each ranker follow a zipf

distribution. In this case, we expect a sharp decrease in the scores, but the ranks will

not reflect this information. As a result, using rank values in aggregation results in

a harder aggregation problem due to the amount of information loss. In applications

like meta-search engines (that merges the search results of search engines), scores

are rarely available. It is possible to incorporate additional information about the

objects at the time of aggregation. The use of scores and ranks together is outside

the scope of this thesis. In other applications, e.g. voting, there are only ranks or

positional information available for processing.

3.2 Performance measures

To evaluate rank aggregation methods, we will use a performance measure

that assesses the degree of closeness or similarity between two rankers, r1 and r2.

44

In one type of error measure, both rankers are treated symmetrically, as in the case

of Kendall-tau measure. In other performance measures, which are inherited from

the traditional information retrieval systems, one ranker is used as a reference point

to model the “correct” ranker. The recall and precision performance measures are

examples of this. We will refer to the reference ranker as the ground truth. Given

that rankers may not rank the same objects, performance measures must be able

to cope with this problem as well. For each performance measure, we assume each

ranker is a partial list of objects. The first two measures listed below are measures of

performance, but we will refer to all of them as performance measures for uniformity.

We will indicate whether we are attempting to minimize or maximize each measure

where appropriate.

3.2.1 Recall

Recall is typically defined in the prior literature as the proportion of rele-

vant documents that are retrieved. Hence given r1 and r2, we can define recall as

the lowest j such that [r2]K contains all the objects in r1, where recall(r1, r2) =

max{j|∀o ∈ r1, j = rank(r2, o)}. This assumes that ranker r1 is the correct ranking

or the ground truth. In order to effectively measure recall, we assume that ranker

r2 is a full list with respect to r1, where DB(r1) ∪ DB(r2) = DB(r1). Otherwise,

the object is undefined in r2 and hence can not compute the j value.

3.2.2 Precision and TREC-style average precision

These measures also assume r1 to be the reference ranker or ground truth.

Precision pr(r1, r2) gives the number of common objects in both rankers. Assuming

we have [r1]K and [r2]K , a frequently used variation of precision is the TREC-style

average precision (TSAP), which is given by

tsap(r1, r2) =

∑
i reli
K

where reli = 1/i if the ith object in r1 is in r1 and reli = 0 otherwise. The TSAP

measure takes into account not only the number of relevant objects, but also where

they occur. The precision and TSAP performance measures can be computed on

45

either full or partial lists. The precision and TSAP performance measures disregards

the objects in the ranker’s database that do not appear in both rankers, implicitly

labeling them as irrelevant.

3.2.3 Spearman’s rho footrule and Kendall-tau

The definition of the distance measure, Spearman footrule, is as follows [50, 51].

Spearman footrule is the sum of the difference of ranks over all objects o ∈ UA in

both rankers. Mathematically, we have F (r1, r2) =
∑
o∈DB(r1)∪DB(r2) |rank(r1, o) −

rank(r2, o)|. The footrule error measure assumes that an object o is assigned a rank

in rankers r1 and r2. In the case of partial lists, if an object o is undefined in one

ranker, then a default rank is imposed.

Another performance measure is Kendall-tau τ(r1, r2), which is the total num-

ber of pairwise disagreements between rankers r1 and r2 is given by

τ(r1, r2) =
∑

o1,o2∈r1,r2
K

(p)
oi,o2

(r1, r2)

The disagreements are counted as follows:

K
(p)

o1,o2
= 1 if o1, o2 ∈ r1 and o1, o2 ∈ r2

then rank(r2, o1) < rank(r1, o2) and rank(r2, o1) > rank(r2, o2)

(or rank(r1, o1) > rank(r1, o2) but rank(r2, o1) < rank(r2, o2))

where a penalty p is used in case of missing objects. The penalties p1 and p2 are

defined specifically for certain cases of missing objects. Kendall-tau is sensitive to

sortedness of the objects. It computes the bubble-sort distance, which is the total

number of flips required to sort one ranker to make it identical to the other. In

Table 3.1, the Kendall-tau disagreement penalty for different cases.

For the cases where objects are missing, a penalty function is introduced based

on the assumptions made about the system. There are four cases to consider: In

Case 1, o1 and o2 appear in both rankers as explained above. Case 2 states that o1

and o2 both appear in one ranker (r1), and only one of o1 or o2 appears in the other

ranker (r2). Suppose now rank(r1, o1) < rank(r1, o2). If o2 appears in the other

ranker but not o1, then there will be a disagreement if object o2 exists in ranker r2.

46

Order Preserved Pairwise Disagreement

Case 1 K
(p)

o1,o2
((o1, o2) ∈ r1, r2) = 0 K

(p)

o1,o2
((o1, o2) ∈ r1, (o2, o1) ∈ r2) = 1

Case 2 K
(p)
o1,o2

((o1, o2) ∈ r1, o1 ∈ r2) = 0 K
(p)
o1,o2

((o1, o2) ∈ r1, o2 ∈ r2) = 1

Case 3 N/A K
(p)
o1,o2

(o1 ∈ r1, o2 ∈ r2) = p1

Case 4 N/A K
(p)
o1,o2

((o1, o2) ∈ r1, (o1, o2) /∈ r2) = p2

Table 3.1: Kendall-tau disagreement penalties

The penalty in this case is set to p1 which denotes the probability of o2 appearing in

the other ranker. Case 3 suggests that o1, but not o2, appears in a ranker (r1), and

o2 but not o1, appears in the other ranker (r2) (or the reverse). Again, there will be

a pairwise disagreement if o2 and o1 will appear in the respective rankers and the

penalty is set to p1.

Lastly in Case 4, o1 and o2 both appear in one ranker (r1), but neither appear

in the other ranker (r2). In this case, a penalty p2 is assigned which corresponds

to the number of times o1 and o2 can be expected to be in the same order in the

other ranker as well. If p2 = 1/2, then we use the approximate case assumption, in

which the order is not always accurate. If p2 = 0, then we are assuming that the

objects are in the correct order so no penalty is imposed. If we assume that all the

rankers rank the same objects, then missing ranks can only be larger than existing

ranks. It is then possible to get p1 = 1. In the case when both objects in one ranker

are missing their relative ranks, there are two options. An average case is to set

p2 = 0.5. For a more optimistic view, we can set p2 = 0. This allows us to only

count actual disagreements.

Note that these measures are not normalized, i.e. measures for rankers of dif-

ferent lengths are not immediately comparable to each other. The Kendall-tau and

footrule performance measures require more calculations as the number of objects

observed increase. While normalization is possible, as shown in Fagin et al. [55],

this may introduce a bias against the missing objects. We chose to use the non-

normalized version of Kendall-tau.

CHAPTER 4

RANK BASED ALGORITHMS

In this chapter, we first describe several well-known aggregation methods, which

serve as base methods in the analysis provided in this thesis. The rank aggrega-

tion methods take as function a number of top-K rankers and return as output a

top-K aggregate ranker. The average and median aggregation methods have been

use frequently in the literature (such as [56, 86, 104]) as they provide meaningful

representations of the rankers and are easy to compute. The PageRank aggrega-

tor, a form of Markov chain aggregator [53], is slightly more costly to implement

based on a graph representation of the rankers. We then present an aggregator

called precision optimal (PrOpt), although relatively simple, has not been discussed

in prior literature to the best of our knowledge. As we will see, it also provides

a meaningful representation of the rankers with low computational cost. We also

present a novel aggregation method based on optimizing the Kendall-tau perfor-

mance measure called iterative best flip (IBF). We also discuss another Kendall-tau

optimization method called adjacent pairs (ADJ) that was discussed in previous

literature.

4.1 Background

Given a set of rankers {r1, . . . , rs}, and an aggregate ranker rA, our objective

is to reduce the average error between rA and {r1, . . . , rs} where we define the

average error to be Eav = 1
s

∑s
i=1 E(ri, rA) where E(ri, rA) could be any one of the

error measures discussed previously. We consider two aggregators which attempt

to optimize the Kendall-tau error in Section 4.7. One based on optimizing using

adjacent flips (ADJ), and a new optimizer based on an iterative best flip (IBF)

approach. With any rank aggregation method, ties among the objects may exist.

The choice of how to break ties can have an impact on the quality of the aggregation

method. Unless otherwise indicated, ties are broken randomly.

47

48

4.2 Average (Av) and Median (Me)

The average and median aggregators are defined in the usual way. The average

(or median) value of all the ranks of an object in the set of rankers are used to obtain

the aggregate ranker of the objects. If an object is undefined because it is not in the

top-K of the ranker, then we assign a default rank of K + 1 for these aggregators

assuming that the object is in the database of the given ranker and hence will have

a lower rank.

4.3 CombMNZ

The prior work of Fox and Shaw [60] and Lee [86] present the CombMNZ

algorithm, initially using scores [60] and later using ranks [86]. This algorithm orders

objects based on the frequency of appearance in the input rankers and ranks. More

formally, we implement CombMNZ as follows. Let DB(r) be the set of objects that

appear in an ranker r and |DB(r)| be the number of objects. We define aggregate

ranker rA as the sorted list of objects from the rank aggregation methods. We now

denote DB(rA) = DB(r1)∪. . .∪DB(rs) for s rankers. Given rankers {r1, . . . , rs}, we

perform Borda rank normalization (brn) for each object o ∈ DB(rA), as presented

in Renda et al. [104].

brni(o) =

 1− rank(ri,o)−1
|DB(rA)| if o ∈ ri

0 otherwise
(4.1)

Now we can compute the aggregate score sc(o) for each object o. We denote

h({r1, . . . , rs}, o) as the number of times object o appears in the rankers (in range

[1,s]). The set of aggregate scores are then sorted in decreasing order.

CombMNZ : sc(o) = h({r1, . . . , rs}, o) ∗
s∑
i=1

brni(o) (4.2)

4.4 PageRank (Pg) – A Markov Chain Aggregator

The Markov chain aggregator MC4 in Dwork et al. [53] constructs the aggre-

gate ranker by means of a Markov chain in which the transition from an object

in MC4 occurs if the destination object is ranked higher for the majority of the

49

input rankers. The steady-state of the Markov chain corresponds to the rankings

of the aggregate ranker. This algorithm is introduced as a way to approximate an

aggregation that reduces the total Kendall-tau error between the aggregate and the

input rankers. Since it is not described explicitly how sink nodes are handled in

this work, we use the PageRank algorithm [28] as an approximation to MC4. The

transitions are identical to MC4 but the random jump probability removes the sink

node. Given a set of rankers, the PageRank algorithm proceeds as follows. Each

distinct object in (DB(r1)∪. . .∪DB(rs)) represents a node in the graph G = (V,E).

A directed edge from object oi to object oj is introduced in E which ranks oi above

oj including the implied ranks. The link is given weight w(oi, oj) that is proportional

to the difference of ranks it represents. These weighted edges are added to the graph

for each object-pair in the input rankers. This means that our graph G contains

parallel edges with possibly different weights. The weights are then normalized so

that outgoing edges have total weight of 1 for each node. The pagerank of an object

is given by a combination of the probability of navigating to that object from an-

other or by randomly jumping to that object. The pagerank computation reduces

to the problem of computing the steady state probability of a Markov chain with

the same transition probabilities. The pagerank Pg(oi) of an object oi is given by

Pg(oi) = (1− α)pi + α ∗
∑

(oj ,oi)∈E

Pg(oj) ∗ w(oi, oj)

outdeg(oj)

where outdeg is the outdegree of a node. The probability of randomly jumping to

a site is proportional to the indegree of that node where pi = indeg(oi)∑
oj∈V

indeg(oj)
. This

measure approximates the ranking produced by the average rank aggregator.

4.5 Precision Optimal Aggregation (PrOpt)

We compute the aggregate ranker by ranking objects by the number of times

they appear in the top-K for a set of rankers. The top-K objects are selected from

this aggregate. If there are ties for any rank including the Kth rank, then we break

ties with respect to the order imposed by the average aggregator. If there are still

ties, then we break them randomly. A general model of the aggregation method is

50

presented below.

1: function PrecisionOptimal(rankers: {r1, . . . , rs}, retrieval size K)

returns ranker: rA

2: position← 1

3: for each object o ∈ O do

4: for each ranker rj do

5: if rank(rj,o) == undefined then

6: rank(rj,o) ← K + 1

7: else

8: freq(o)← freq(o)+1 //freq(·) = frequency count of object o in rankers

9: sort(freq(·)) //descending order

10: while position < |O| do

11: let F be a vector of all objects with same frequency count

12: if |F| == 1 then

13: rA(position)← F

14: else

15: sort(avgrank(F)) //ascending order

16: let A be vector of objects with same average rank in F

17: if |A| == 1 then

18: rA(position)← A

19: else

20: randomly pick an object A from F

21: rA ← A

22: increment position

23: return rA

4.6 Condorcet-fuse

The Condorcet-fuse algorithm [97] constructs a graph G = (V,E) where V =

DB(rA) and e(oi, oj) ∈ E is an unweighted directed edge where oi → oj (or oj → oi)

indicates that oi (oj) dominated oj (oi) in the majority of rankers. Thus, for every

pair of objects, there is at most one edge. The objects are then sorted in such a

51

way to remain consistent with the directed edges. Therefore, the objects are listed

such that all edges are forward edges. In the case of ties, the objects are randomly

ordered. More formally, we show the algorithm below.

1: function cfuse(graph G) returns ranker: rA

2: for all pairs of objects o1 and o2 in V do

3: count = 0

4: for each ranker ri do

5: if ri ranks o1 above o2 then

6: count+ +

7: if ri ranks o2 above o1 then

8: count−−
9: if count > 0 then

10: rank o1 above o2 (create an edge e(o1, o2))

11: else

12: rank o2 above o1 (create an edge e(o2, o1))

13: RA = empty

14: for each object o ∈ V do

15: InsertionSort(rA, o)

16: output rA

4.7 Kendall-tau Optimal Aggregators

In this section, we present methods to reduce the Kendall-tau error between

the rankers and aggregate ranker. Finding a ranker that is optimal with respect to

this performance measure is known to be an NP-complete problem [14]. To compute

it approximately, we implement two heuristic optimization techniques. Each method

takes as input an initial aggregation and then tries to reduce the Kendall-tau error

through a localized or global search method.

4.7.1 Adjacent Pairs (ADJ)

A ranker is considered locally Kemenized if there does not exist any pair of

objects oi and oi+1 with adjacent ranks such that when these objects are flipped the

52

overall Kendall-tau error will be reduced. An algorithm to find a locally Kemenized

ranker was proposed in Dwork et al. [53]. The authors also show how their algorithm

can be implemented approximately in time O(n log n). The general approach is to

take a ranker and then perform a sequence of swaps between adjacent objects that

would lead to a reduction in the Kendall-tau. We will call this algorithm adjacent

pairs (ADJ) optimization. To compute it, we begin with an initial ranker, using one

of the elementary aggregation methods discussed above, and iterate through each

object checking if an adjacent swap will further minimize the Kendall-tau. The algo-

rithm repeatedly checks the aggregator for adjacent swaps until no further reduction

can be obtained. For completeness, we include a description of this algorithm.

1: function adjPairs(rankers: {r1, . . . , rs}, aggregate ranker: rA)

returns ranker: rA

2: for i=1 to n do

3: Let o1 be ranked such that rank(rA, o1) = i

4: Let o2 be ranked such that rank(rA, o2) = i+ 1

5: swap o1 with o2 in rA

6: compute Eav after the swap;

7: if Eav reduced then

8: permanently swap objects

9: repeat for-loop until no further reductions can be performed

10: return rA with minimum Eav;

4.7.2 Iterative Best Flip (IBF)

In this section, we describe a novel Kendall-tau optimization method. The al-

gorithm performs local combinatorial optimization, originally introduced by Kernighan

and Lin [78] in the specific context of graph partitioning. The general idea behind

our algorithm is to perform a sequence of greedy swaps that eventually leads to

a good local minimum of the average error. A key feature is that greedy swap

is performed even if the error increases. In this way, the algorithm has a limited

amount of look ahead. We begin an initial ranking, which could be one of the other

aggregators. The algorithm proceeds as follows.

53

1: function bestFlip(rankers: {r1, . . . , rs}, aggregate ranker: rA)

returns ranker: rA

2: repeat

3: rold ← rA, Config ← 〈rA〉, finished← false;

4: for each object oi ∈ rA do

5: for every object oj ∈ rA and (oi 6= oj) do

6: compute Eav after the swap;

7: perform the swap with minimum Eav in rA; {Eav may increase as a result}
8: add rA to Config

9: Let rnew be the ranking in Config with the minimum Eav;
10: if rnew has smaller error than rold or rnew has the same error as rold but is a

new configuration then

11: rA ← rnew

12: else

13: finished← true

14: until finished

15: return rA

Note that the algorithm is forced to make a swap when considering each object

sequentially (according to some arbitrary ordering). The best swap is made even if

this leads to a temporary increase in the average error. It is exactly this flexibility

which has been found to help the algorithm escape from bad local minima. The

algorithm above is repeatedly executed, each time starting from its own output until

no further progress is made meaning the ranker no longer changes. We also add an

additional step where we check if the error does not change after an iteration of the

outer for loop but a new ranker that has not been seen yet has been found (in line

10). In this case, we continue iterating. A straightforward implementation which

computes the average error after each swap would have computational complexity

O(s ·f(n) ·n2) where f(n) is the cost of computing the average error for an aggregate

ranker where n is the number of objects. We are using the Kendall-tau performance

measure, for which f(n) = O(n2). By performing a pre-processing step which allows

us to update the average error, instead of recomputing it from scratch, each time a

54

swap is made, one can improve the computational complexity to O(n3)).

Computational Complexity of IBF. We now describe how to reduce the com-

putational complexity of the IBF algorithm from O(s · f(n) · n2) to O(n3). To

efficiently implement the IBF optimization, we perform a pre-processing step that

stores the Kendall-tau changes for every pair of objects. We then use this informa-

tion to update the Kendall-tau changes incrementally for each possible flip.

We present the algorithm for this stage below. We construct a lookup table of

each object and its rank in every ranker as described in Lines 4-7. Then, for every

pair of distinct objects oi and oj, we compute the number of rankers that rank oi

above oj and oj above oi. In this computation, we do not consider if the ranks are

actual or estimated to be K + 1. In Lines 18-19 and 21-22, if p1 = 1, then the order

of the objects is assumed to be incorrect and the inversion cost is 1. In the case of

p1 = 0, we assume there is no inversion , which is a mistake and Kendall-tau should

be reduced by 1 for every occurrence. The correct Kendall-tau counts are calculated

for the pair of objects, where KTM(oi, oj) refers to the change in Kendall-tau count

when oi is ranked above oj and KTM(oj, oi) refers to the change in count when oj

is ranked above oi.

1: function InversionPenalty(rankers: {r1, . . . , rs}, aggregate ranker: rA,

penalty: p1) returns n · n matrix: KTM

2: Let RM be an n · s matrix containing object ranks in each ranker

3: Let KTM be an n · n matrix where each entry KTM(oi, oj) = K(oi, oj)

4: for each object o ∈ O do

5: for each ranker rj do

6: if rank(rj,o) > K then

7: rank(rj,o) ← K + 1

8: add rank(rj, o) to RM(o,:)

9: for oi ∈ rA do

10: for oj ∈ rA do

11: if oi != oj then

12: vi ← RM(oi, :), vj ← RM(oj, :)

55

13: vij ← vi − vj, vji ← vj − vi

14: xij ← |rank(r, oi) < rank(r, oj)| s.t.

∀rank(r, oi) ≤ K, ∀rank(r, oj) ≤ K in vij

15: xji ← |rank(r, oi) > rank(r, oj)| s.t.

∀rank(r, oi) ≤ K, ∀rank(r, oj) ≤ K in vji

16: yij ← |rank(r, oi) < rank(r, oj)| s.t.

∀rank(r, oi) ≤ K, ∀rank(r, oj) = K + 1 in vij

17: yji ← |rank(r, oi) > rank(r, oj)| s.t.

∀rank(r, oi) = K + 1,∀rank(r, oj) ≤ K in vji

18: if vij has values > K then

19: xij ← xij − (1− p1) ∗ yij
20: xji ← xji − (1− p1) ∗ yji
21: if vji has values > K then

22: xij ← xij − (1− p1) ∗ yij
23: xji ← xji − (1− p1) ∗ yji
24: KTM(oi, oj)← xij, KTM(oj, oi)← xji

25: return KTM

Using the KTM and RM , we can apply a shortcut to compute the Kendall-tau error

for the IBF optimization algorithm. The change of the Kendall-tau for any pair of

objects is determined efficiently by reducing the number of function calls to the

Kendall-tau computation. We now describe the method to update the Kendall-tau

in flipping two objects using the incremental Kendall-tau computation algorithm

below. The incremental algorithm counts the change in the number of inversions

from the initial aggregate ranker to the new aggregate ranker, in which the new

aggregate ranker rA is a swap of two objects from the initial aggregate ranker.

The pairs of objects affected lie between two positions e.g. posi = rank(r, oi) and

posj = rank(r, oj). Two for-loops are performed that counts the change in the

number of inversions if we flip objects oi and oj. In line 6 and 9, kcount counts for

the inversion penalty for all the objects between posi and posj since the Kendall-tau

error will change. In the first for-loop, we consider the effect of flipping object oi

while in the second for-loop, we address the change in Kendall-tau error of flipping

56

object oj.

1: function IncrementalKendall(objects matrix:KTM , aggregate ranker: rA,

rank(r, oi): posi, rank(r, oj): posj) returns integer: kcount

2: kcount← 0

3: determine highest rank between posi and posj, let’s assume posi < posj

4: for z = posi + 1 to posj do

5: let oz be the object at position z

6: kcount← kcount+ (KTM(oz, oi)−KTM(oi, oz))

7: for z = posj − 1 to posi + 1 do

8: let oz be the object at position z

9: kcount← kcount+ (KTM(oj, oz)−KTM(oz, oj))

10: return kcount

4.8 Information vs. robustness trade-off

Now, we will elaborate on the properties of the above rank aggregation meth-

ods. In general, an aggregate ranker is considered a “complex” ranker if it adapts

its final ranking to the subtle nuances in the input rankers. Thus, necessarily, such

a complex aggregator will easily be misled by noise in the data – it is too sensitive

to small fluctuations (inconsistencies) in the data, and as a result its performance

rapidly degrades as such inaccuracies appear in the data. Conversely, consider the

other extreme, an aggregator which considers little or none of the information con-

tained in the rankers – for example an aggregator which completely ignores the input

rankers and outputs a constant ranking. Such an ignorant ranker will have a poor

performance, however its performance will not degrade as inaccuracies appear in the

input rankers. Such a ranker uses less information, however it is robust. We consider

an aggregator that uses less of the information contained in the input rankers as a

“simple” aggregator even though a simple aggregator may be hard (computationally

complex) to construct.

One of the simplest aggregator we introduce is the precision optimal aggregator

(PrOpt) that disregards all information regarding the actual ranks except for the

number of times an object appears in the input rankers. However, when the input

57

rankers contain almost the same objects, then the ranks produced by PrOpt are very

similar to the output of the average aggregation method which is used for breaking

the ties. The median aggregator disregards a specific type of information since it

throws away all rank information for an object except for the middle one. Hence,

it is not affected by changes in the actual rank values of outliers. The average

aggregator is one of the most complex methods in our tests since it includes all the

rank values in the computation. Note that neither median nor average explicitly

take into account the number of times an object appears in the input rankers.

The question is then whether optimizing for Kendall-tau introduces more or

less information about the input rankers. One of the best known voting paradoxes

as discussed by Saari [107] shows that when aggregating votes to find the optimal

ranking of candidates, the winner of pairwise elections may not be the winner of the

plurality vote. We examine what this means for the Kendall-tau optimal aggregator.

In the table below, we show an example of two rankers, r1 and r2, for three objects.

As we can see in the table, all three orderings given are Kendall-tau optimal with

r1 r2 average Kendall-tau optimal
o1 o3 o1 o3 | o1 | o1

o2 o1 o3 o1 | o2 | o3

o3 o2 o2 o2 | o3 | o2

respect to the rankers r1, r2, while only one of them is corresponds to the unique

average aggregator. So, the Kendall-tau optimal ranking that uses only pairwise

comparisons seems to ignore some information about the rankers which the average

ranker uses. To see why, note that for r1, when comparing o3 to o2 and o1, we do

not take into account the fact that o2 is ranked below o1 and hence o3 is ranked

third. Thus in the Kendall-tau, a flip is a flip, no matter how far apart the flipped

objects are. Hence, it is insensitive to the location of the flips. On the other hand,

the average takes into consideration the distance between flipped objects.

Given that Kendall-tau optimal ranking ignores some information, it leads

to an aggregation method that is robust to noise. This was the main motivation

behind the introduction of this optimization method in the literature [53]. The two

optimization methods we study here ADJ and IBF as well as the PageRank (Pg)

58

methods are approximations of the Kendall-tau optimal ranking. As our tests show,

the performance of these methods depends on the initial starting ranking from which

the optimization proceeds. In the case of Pg, the average rank serves as the starting

point. We evaluate all other methods using different starting rankings. Our results

show that IBF is a far superior optimizer than ADJ, hence it produces a good

approximation to the true Kendall-tau optimal aggregator (even if our optimizer

starts from a random ranking). Therefore the IBF optimized version of any ranker

depends less on the input rankers than the ADJ optimized version. Generally, we

expect that both Pg and the AvIBF (IBF following average aggregator) contain

less information about the location of flips than the average aggregator. However,

any Kendall-tau optimization possibly leads to an aggregator that contains more

information than PrOpt especially in noisy scenarios. If comparing Me with MeIBF,

we can argue that MeIBF possibly contains less information about the middle ranker

but more information about the other rankers than Me.

These aggregators incorporate different types of information to varying de-

grees. This provides us with a fairly extensive set of methods to test the informa-

tion and robustness trade-off in aggregation methods and highlight when a specific

aggregation method outperforms the others.

CHAPTER 5

APPROXIMATION ALGORITHMS

In this chapter, we introduce three graph based algorithms that can be used to solve

a related problem, called minimum feedback arc set (MFAS). It has been shown that

finding the Kemeny optimal ranking [76, 77] reduces to the problem of solving the

MFAS problem, which is NP-hard [6, 14]. Two algorithms, Greedy and SubIBF,

initially construct biconnected components1 of the objects in order to find (and

remove) cycles, in addition to, trying to organize the objects with respect to the

dominating order of every object pair. The third algorithm, CUT [106], recursively

divides the objects into two subgraphs with the objective of minimizing the total

edge weight across the subgraphs. The CUT algorithm terminates when each object

is its own subgraph and a distinct ordering of object can be generated.

5.1 Minimum Feedback Arc Set (MFAS) Problem

We first formally define the MFAS problem and how the rank aggregation

problem and the MFAS problem are related. We also discuss how to construct the

aggregate ranking given a series of sub-graphs.

Minimum Weight Feedback Arc Set. Given a weighted directed graph G =

(V,E) where each pair of objects oi and oj, a weight w(oi, oj) describes a weight of

an edge from oi to oj. The minimum weight feedback arc set finds a set E ′ of edges

such that (1) G′ = (V,E − E ′) is acyclic and (2)
∑

(oi,oj)∈E′ w(oi, oj) is minimized.

Rank aggregation to MFAS. The rank aggregation problem can be reduced the

MFAS problem as follows. Given rankers r1, . . . , rs of length K each, we construct a

graph G = (V,E) such that V contains all the objects ranked by the input rankers.

Given objects oi, oj, suppose li rankers rank oi higher than oj and lj rank oi lower

than oj. Note that li + lj ≤ s as not all objects are ranked by all the rankers.

1Biconnected components in our case means strongly connected components, such that for all
vertices u, v there is a path from u to v and a path from v to u.

59

60

If li > lj (i.e. majority of rankers rank oi higher than oj) then, we add an edge

(oj → oi) with weight li − lj. Otherwise, we add an edge (oj → oi) with weight

lj− li. Any missing ranks are assigned a default rank of K+1. Note that this graph

is a special case of a tournament where only one of (oi → oj) or (oj → oi) may

exist. In our case, there may be no edges between oi and oj in case of a tie. This

graph representation of the rank aggregation problem differs slightly from the one

given in [4] which would assign weights li/s and lj/s in each direction and disregard

the one with the lower weight when solving the MFAS problem. As an acyclic graph

is found as a solution to the MFAS problem, we can then use it to find an ordering

among the initial objects.

Rank ordering of a graph. Given an acyclic graph G, the ordering (ranking) of

the vertices induced by G is given by the topological ordering of the vertices and by

breaking ties arbitrarily. The top node with only incoming edges and no outgoing

edges is considered rank 1, the highest rank. Prior literature [45] examines the

special case of feedback arc set problem to solve rank aggregation through ordering

with respect to the weighted incoming edges.

5.2 Approximation Algorithms for MFAS

We introduce a series of algorithms using the strongly connected components

of G. Suppose, G has exactly two biconnected components, G1 and G2. Then, all

edges between these two components must be in one direction, suppose from G2

to G1 resulting in an acyclic hyper-graph. Otherwise, they would be part of the

same biconnected component. The problem can then be reduced to solving the

MFAS problem for each sub-graph. The biconnected components of graph G can

be constructed in Θ(V + E) time [46], and partitions the graph into sub-graphs

Sub = {G1, G2, . . . , Gf} where |Vi| ≥ 1. We use the notation bcc(G) to refer to

the biconnected components algorithm. As discussed above, if all the subgraphs are

reduced acyclic graphs, then G will also be acyclic.

61

5.2.1 Greedy Algorithm (Greedy)

The greedy algorithm operates on biconnected components of the input graph.

It picks a biconnected component at random, locates an edge with the minimum

weight and removes the edge from the graph. The biconnected components are

updated after each edge removal. The algorithm continues to run until all the

biconnected components are of size 1 which is an acyclic graph.

1: function greedy(G) returns acyclic graph Sub

2: Sub← bcc(G)

3: repeat

4: Pick Gi = (Vi, Ei) from Sub uniformly at random

5: if |Vi| > 1 then

6: find the cheapest edge in Gi and remove it

7: call this new sub-graph G∗

8: Sub← bcc(G∗) ∪ (Sub− {Gi})
9: until for all Gi = (Vi, Ei) in Sub and |Vi| == 1

10: return Sub

5.2.2 CUT-recursive Algorithm (CUT)

The cut partitioning algorithm first constructs a random cut by separating

the vertices into two subgraphs with the Generator algorithm. Then, it tries to

improve the cut continuously using the Improve and Scan algorithms. The aim is to

maximize the total weight of forward edges from one cut to the other. The algorithm

finds the maximal cut for different starting points and chooses the best one among

those tried.

The CUT procedure. The Cut algorithm maximizes the edge weights from the

right partition to the left partition. Once the edge weights are maximized, the edges

in the opposite direction are reversed. The cost of the cut is then given by the total

cost of the reversed edges. As the best cut is found, the algorithm then tries to

partition the vertices in each subgraph recursively, reversing edges when necessary.

The algorithm stops when each object is its own partition and returns the resulting

62

acyclic graph.

1: function CUT(G)

returns acyclic graph G′A, cost C

2: Configs← empty

3: select a parameter T, e.g. T ← ln(n)

4: for i=1, i<T; i++ do

5: G1, G2 ← Generator Random(G)

6: G∗1, G
∗
2 ← Improve(G1, G2)

7: G′1, C1 ← Cut(G∗1)

8: G′2, C2 ← Cut(G∗2)

9: E ′ ← {(oi, oj) | oi ∈ V ′2 , oj ∈ V ′1 , (oi, oj) ∈ E}
10: Cost← ∑

(oi,oj)∈E′ w(oi, oj)

11: G′A = (V,E ′1 ∪ E ′2 ∪ {(oj, oi) | (oi, oj) ∈ E ′})
12: add (G′A, Cost+ C1 + C2) to Configs

13: return (G′A, Cost) with the minimum-cost from Configs

The Generator procedure. The first phase of the CUT algorithm is to initialize

the two partitions by randomly selecting the set of objects in each partition.

1: function Generator Random(G)

returns graphs: G1, G2

2: for i=1 to n do

3: x = random()

4: if x < 1/2 then

5: put oi in V1

6: else

7: put oi in V2

8: Let G1 be the graph induced by V1

9: Let G2 be the graph induced by V2

10: return G1, G2

63

It is also possible to divide the nodes in the graph with respect to some in

initial ordering as follows. If the initial ordering is given by some other aggregator

x, we will call this version of the Cut algorithm xCUT.

1: function Generator Ordered(G, r)

returns graphs: G1, G2

2: for i=1 to n do

3: if oi is in the half of the ranking r then

4: put oi in V1

5: else

6: put oi in V2

7: Let G1 be the graph induced by V1

8: Let G2 be the graph induced by V2

9: return G1, G2

The Improve procedure. The second phase of the CUT algorithm is to iterate

through the vertices in each partition and determine which partition it belongs. The

aim of the Improve algorithm is to maximize the total weight of the edges across

the partition or cut in any one direction. Given two partitions G1 = (V1, E1) and

G2 = (V2, E2) of G = (V,E), an edge within a partition is in E1 or E2. An edge

across the partition is one in E − (E1 ∪ E2).

For each vertex, we compute the total weight of incoming and outgoing edges

within a specific subgraph G1 or G2, denoted by inw, outw. Similarly, we compute

the total weight of incoming and outgoing edges across from one subgraph G1 (or

G2) to another subgraph G2 (or G1). For example, if oi ∈ V1, inw(i) =
∑{w(oj, oi) |

(oj, oi) ∈ E, oj ∈ V1} and ina(i) =
∑{w(oj, oi) | (oj, oi) ∈ E, j ∈ V2}. The

outgoing edges are computed similarly. We then try to move one vertex oi from

one partition to another to try to improve outa(i) for that vertex. We switch each

vertex that reduces the cost once resulting in a new configuration and then choose

the configuration with the lowest cost among all tried. This process is repeated until

the total weight of edges from one to the other no longer improves.

1: function Improve(graphs: G1, G2)

64

returns graphs: G1, G2

2: L← 0, R← 0, width← 0

3: for each vertex oi do

4: compute inw(i), ina(i), outw(i), outa(i)

5: if oi ∈ V1 then

6: L← L+ outw(i)

7: else

8: R← R + outw(i)

9: if R < L then

10: swap(G1, G2) //renames G1 and G2

11: width ← R

12: else

13: width← L

14: while width changes do

15: G1, G2, width← SCAN(G1, G2, width)

16: return G1, G2

1: function Scan(graphs G1, G2, width)

returns graphs G1, G2, width

2: partitions← empty

3: for each vertex oi do

4: hot ← oi

5: for j=1 to max{|V1|, |V2|} do

6: if G1 has hot vertices then

7: select a hot vertex ok ∈ G1

8: if outa(k) < inw(k) then

9: Put ok in G2

10: cold ← ok

11: if G2 has hot vertices then

12: find a hot vertex ok ∈ G2

13: if outw(k) > ina(k) then

14: Put ok ind G1

65

15: cold ← ok

16: update width

17: p← (G1, G2, width)

18: add p to partitions

19: return (G1, G2, width) with the minimal width from partitions

5.2.3 Sublist-IBF Algorithm (SubIBF)

Recall the IBF algorithm given in Section 4.7.2. This algorithm takes as input

an initial aggregate ranking and a set of input rankers that is used to compute the

error of a ranking. For the MFAS algorithm, the error function that uses the input

graph is shown below. Let oi = findObject(r, i) be a function that locates the

object oi that appears in the ith rank in some ranker r. For simplicity, we reuse the

term Eav, which we defined in Section 4.1.

1: function error(graph: G, aggregate ranker: rA)

returns integer Eav
2: Eav ← 0

3: for l = 1 to K − 1 do

4: Find ol such that ol = findObject(rA, l)

5: Eav ← Eav +
∑

(ol,oj)∈E w(ol, oj)

6: E = E − ({(ol, oj) | (ol, oj) ∈ E})
7: return Eav

By substituting the above error function in the IBF function, we obtain a graph

based version of the IBF algorithm. The Sublist-IBF (SubIBF) algorithm first finds

biconnected components and then executes the IBF algorithm on each subgraph.

We refer to ibf(G, rA) as a modified version of the bestF lip({r1, . . . , rs}, rA) in which

G is a graphical representation of the content in the input rankers {r1, . . . , rs} and

minimizes the error between the input data and aggregate ranker ra.

1: function SubIBF(graph: G, aggregate ranker: rA)

returns graph G

2: Sub←bcc(G)

66

3: for each Gi = (Vi, Ei) in Sub do

4: if |Vi| > 1 then

5: Let rAi
be the portion of rA corresponding to vertices in Gi

6: r′Ai
← ibf(Gi, rAi

)

7: Remove from G all edges that contradict with r′Ai

8: return G

CHAPTER 6

STATISTICAL FRAMEWORK FOR AGGREGATION

In this chapter, we describe a statistical model that we use to evaluate the rank

aggregation algorithms and their input rankers. When evaluating rank aggregation

methods, it is very hard to develop objective test cases. Most often, relevance

quality of result are given by an expert or user. The problem with this approach

is that it is difficult to develop extensive tests to examine the relationship between

the input rankers and the correct ranking. To address this problem, we introduce a

statistical model where we first define a ground truth and then develop models of

noise, misinformation and spam. We first describe the terminology and definition

associated with the statistical model in which all data is known. Then we discuss the

impact of missing objects and correlation with respect to the statistical framework.

6.1 Framework Basics

In our framework, we assume that there is a ground truth ranker r, which is a

vector containing all n objects in sorted order. The ground truth rank of an object

(a web page in the case of a search engine) is determined using a score computed

from factors {f1, . . . , fm}, where f` ∈ [−3, 3] for ` ∈ [1,m]. Each factor f` measures

some property of the object such as webpages pagerank2, the number of occurrences

of the query keywords in the object’s text, the amount of time the page has been

live, and the frequency of updates. To simplify notation, we collect {f1, . . . , fm}
into the vector f , and write f(oi) for the factors of object oi. The score (or value)

of object oi, denoted Vi, is a weighted linear combination of the factors,

Vi = wf(oi) =
m∑
`=1

w` · f`(oi).

The weight vector w determines the relative importance of the factors. A negative

weight vector indicates that that particular factor is detrimental to the value. In

2Note that Pageank here is assumed to be computed against the Web graph to find the pagerank
of a webpage. Our algorithm Pagerank computes aggregates with respect to input rankers

67

68

our experiments, we have set w > 0 with
∑

w` = 1. We collect all the scores in

the vector V and define the factor matrix F in which the rows of F are the object

factor vectors f , i.e. Fi` = f`(oi). Then, V = Fw.

For simplicity, we will assume that no two objects have the same score. The

ground truth ranks rank(r, oi) are obtained by ordering the objects according to

their scores. The top-K ground truth ranking [r]K is what we would like to estimate.

The available data are the top-K ′ rankings of some other rankers (K ≤ K ′ ≤ n).

Thus, there are other rankers {r1, . . . , rs} which are each somehow related to the

ground truth ranker r (we use subscript to refer to rankers). Our statistical frame-

work provides a natural probabilistic approach to model the relationship between

ranker rj and the ground truth r. Intuitively, each input ranker rj is an approxi-

mation to r constructed as follows: the input ranker attempts to measure the same

factors f which are relevant to the ground truth ranker. However, its measurements

may incur some errors, so the factor matrix obtained by ranker j is written as

Fj = F+εj. Ranker j may also not have the correct relative weights for the factors.

Denoting ranker j’s weights by wj, we have

Vj = Fjwj = (F + εj)wj.

The ranking rj is obtained by ordering objects according Vj. The top-K ′ lists are

the inputs to the aggregation algorithm. The ground truth ranker and the inputs to

the aggregation algorithms are completely specified by F, ε1, . . . , εs,w,w1, . . . ,ws.

The statistical model is therefore completely specified by the joint probability dis-

tribution

P (F, ε1, . . . , εs,w,w1, . . . ,ws).

Such a general model can take into account: correlations among factor values (cor-

relations in F); correlations between factor values and ranker errors (correlations

between F and εj); correlations among ranker errors (correlations among the εj);

correlations between true weights w and ranker weights wj (the degree of similarity

between rankers and the truth); correlations between ranker weights and the errors

of different rankers. First, we set the true weights w to all equal 2
m(m+1)

[1, 2, . . . ,m].

69

We consider two possibilities for the wj: wj = w and wj = wr = 2
m(m+1)

[m, . . . , 2, 1],

which represents a biased treatment of the factors with respect to the true weights.

We introduce correlations between the errors and the factors, so εji` depends only

on Fi`. More specifically, the variance V ar(εji`) is a function of Fi`,

V ar(εji`) = σ2 (γ − Fi`)δ · (γ + Fi`)
β

maxf∈[−3,3](γ − f)δ · (γ + f)β
. (6.1)

This functional dependence allows us to model spam by setting the variance in

the error for negative valued factors to be large, which means they experience large

errors that may propel them high into the rankings. The parameters γ, δ, β are shape

parameters which determine how spam enters the rankings, and σ2 is a parameter

governing the maximum possible variance – how noisy the ranker factors are. The

noise parameter σ2 measures how much the true information is getting corrupted.

The shape parameters γ, δ, β determine which information gets corrupted.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1 0 1 2 3

Er
ro

r

Score

δ=5, β=0.01
δ=0.01, β=5

δ=3, β=3

Figure 6.1: Possible shapes of the correlation between factors and the
magnitude of errors. The x-axis displays the interval of the
factor scores where a positive value indicates more relevant
factor. The y-axis displays the amount of error being adding
to the factor scores. The δ and β denote the degree in which
these factor scores are corrupted.

To complete the model description, the factors for each object are chosen

independently and identically from a uniform distribution with variance 1, and hence

70

lie approximately in the range [−3, 3]. The errors for each factor and each ranker are

chosen independently from a uniform distribution with mean zero and variance given

by the formula above for some choice of σ2, γ, δ, β. The input to the aggregation

algorithm are the top-K ′ lists corresponding to each ranking. In our experiments we

selected K ′ = K. Figure 6.1 shows three possible shapes of this function for γ = 3

and σ2 = 1. Note that the rightmost values show the highest scores. When δ = β,

then the errors are lowest for objects with the highest and lowest values. When

δ >> β, then the rankers are more likely to make large mistakes for low valued

objects which may propel them high into the rankings. This might be due to the

adversarial techniques used by the engines to mislead the algorithms used by the

rankers to estimate a specific factor. We use this last setting in our tests to model

spam.

Let A generically refer to an aggregator, and let E([r]K , [rA]K) be a perfor-

mance measure, such as Kendall-tau, that measures the difference between the

ground truth ranker r and the ranker rA obtained by the aggregator. In a real-

istic setting, [r]K is not known, however in our setting, [r]K is known. Thus, among

the available aggregators, we can select the aggregator with the smallest average

error through simulation within this statistical setting. The statistical framework

can embed qualitative features of the aggregation setting through the choice of

P (F, ε1, . . . , εs,w,w1, . . . ,ws); rigorous simulation can then be used to obtain the

appropriate aggregator for that particular aggregation setting.

The complete list of the statistical framework parameters are displayed in

Figure 6.2. In the case where factors, objects and rankers are not independent from

each other, additional parameters can be used to simulate the correlation. The

correlation parameters σ∗f , σ
∗
n and σ∗nf impose a degree of dependence between all

rankers r, r1, . . . , rs. The relationship between these correlation parameters are as

follows: σ∗nf < min(σ∗n, σ
∗
f) and σ∗nf > σ∗n + σ∗f − 1. Valid correlations between

factors and objects must maintain these dependencies otherwise there is an unfair

bias in the factors or objects. The σf , σn and σnf parameters are used to impose

correlations between specific pairs of rankers, r1, . . . , rs implying the situation when

two rankers’ factors and/or objects are highly similar to each other but dissimilar

71

Notation Description
n number of objects
m number of factors
s number of rankers
w true ranker’s weights
wj weights for ranker j
δ shape parameter where large variance for positive factors near 3
β shape parameter where large variance for negative factors near -3
σ2 the maximum variance in the desired range
σf correlation between two factors of the same object, < 1
σn correlation between two objects for the same factor,< 1
σnf correlation between two different objects for different factors, < 1
σ∗f correlation between two factors of the same object

σ∗n correlation between two objects for the same factor
σ∗nf correlation between two different objects for different factors

σ∗R correlation among rankers

Figure 6.2: Statistical framework symbols and definitions

to the remaining rankers’ factors and/or objects. Note that σf , σn and σnf are

applicable to both the true and input rankers while σ∗f , σ
∗
n and σ∗nf can be assigned

only to the input rankers. The σ∗R parameter is a higher level of correlation that

allows the input rankers to have some sense of correlation not specific to the factors

or objects. We also include a parameter to change the original distribution of the

ground truth scores which can be set to be uniform or normal, we use the uniform

distribution in our current tests.

In preliminary experiments, we made several assumptions such as the ground

truth ranker’s ability to order all the objects in the universe based on a linear com-

bination of factors and weights. The input rankers are therefore permutations of the

ground truth ranker. Each object is assigned a rank in each ranker. The conclusions

from our evaluation are based on a broad and somewhat unrealistic knowledge base.

Assuming that all objects will ultimately be ranked, the default rank of K + 1 is

assigned to these objects. There is also a slight bias in the Kendall-tau computation

since the penalty values assume existing rankers are always correct in their ordering

when ranks of two objects are missing in a ranker. It is also important to consider

different distribution for scores, such as a heavy tailed distribution instead of our

72

current uniform distribution since there is data to suggest that different factors are

likely to follow such a distribution [48]. We also assume that the factors, objects and

rankers are independent from each other, but other correlations exist in real-world

applications. The possibility of missing objects and correlations are discuss below.

6.2 Missing data

It is also possible to model missing objects by assuming with some probability

pim ranker i does not have a specific object in its database and does not rank this

object at all. The ground truth ranker models an ordering of all the objects in the

universe while the input rankers will only index and order a fraction of the objects,

where each input ranker orders a different set of objects. We address the cases

where the input rankers have not assigned ranks to some objects and the influence

of missing information in the formulation of an aggregate ranker. We are interested

in observing how the aggregators perform in the presence of missing information.

As the amount of missing data increases, there is less useful rank information for

all the rankers as an increasing number of ranks will be missing. We examine these

effects under different ranker properties.

6.3 Correlated data

Similar to missing data, we impose varying constraints on the correlations

between objects for the same factor (σn, σ
∗
n), correlations between factors for the

same objects (σf , σ
∗
f) and correlations between input rankers (σ∗R). We consider

both positive and negative correlations, where a positive value denotes a dependence

relationship, a negative value denotes that the degree for the lack of dependence and

a value of 0.0 denotes that there is independence. In this section, we examine the

real world motivating factors for different correlations.

The first type of correlation introduced is between the errors and the factors

(defined by σ2, γ, δ, β), where εji` depends on Fi`. More specifically, we set the

variance V ar(εji`) to be a function of Fi` as described in Equation 6.1. Figure 6.1

shows three possible shapes of this function for γ = 3 and σ2 = 1. Note that the

rightmost values show the highest scores. When δ = β, then the errors are lowest

73

for objects with the highest and lowest values. When δ >> β, then the rankers are

more likely to make large mistakes for low valued objects which may propel them

high into the rankings. This might be due to the adversarial techniques used by the

engines to mislead the algorithms used by the rankers to estimate a specific factor.

We use this last setting in our tests to model spam.

σf Correlation between two factors of the same object in the ground truth ranker.

This models whether two factors measure the same quantity or independent

quantities. For example, the length of page and frequency of keywords would

be correlated positively. Similarly, if we are counting the frequency of a key-

word in title, text and the outgoing links (to measure a hub value for the page)

than it is likely that there will be a correlation. However, this correlation can

be negative as higher occurrence of a keyword in one field may imply a lower

occurrence of another keyword for two texts of the same length.

σn Correlation between two objects for the same factor in the ground truth ranker.

This models the distribution of values for a single factor over all the objects.

Hence, if the correlation is low, the objects take more or less random values.

Otherwise, if there is a positive correlation, one object having low score may

imply another having low score. So, if scores are very close to each other as

a result, the problem becomes harder since the objects are indistinguishable

from each other. For example, for very popular keywords, the distribution will

be very dense meaning there will be lots of pages with the same frequency of

keywords. However, for keywords that have political connotations, one can

imagine a bipartisan situation. Certain objects from one party having a high

occurrence may imply a low occurrence for the objects from the other party,

leading to a negative correlation.

σnf Correlation between two different objects for different factors in the ground

truth ranker.

This models when the value of an object for a factor may depend partially on

the value of another object for another factor. It is possible to model this as

74

σn ∗ σf . It makes little sense to have a non-zero value for σnf when the other

two are zero. For example, suppose we consider two objects, o1 and o2, where

one of the factors of o1 is the pagerank of o1 which links to o2 and one of the

factors of o2 is the frequency of keywords in the anchor links for o2. Since a

search engine may include the keywords of the link from page o1 in the content

of o2, then the frequency depends on the number of number of incoming links

to o1. But, the pagerank of o1 depends on the number of its outgoing links

and where the links lead to, which forms a cycle. So, there is a correlation

between these two objects through different factors.

σ∗f Correlation between the errors made by rankers for two factors of the same

object (one set for each ranker).

The errors made by rankers for two different factors may depend on each

other since rankers use similar algorithms for both. For example, frequency

of keywords in anchor text and in regular text may be independent of each

other. But, if the same algorithm for stemming and categorization is used

then the algorithm makes similar errors in both. Another reason the errors of

two factors may be correlated is when they depend on the underlying index

of pages. For example, factors that use a statistical method for normalizing

the scores will make errors that have dependence on each other. Finally, time

dependent factors will make errors that depend on the time of measurement

and the actual time a specific change was made.

σ∗n Correlation between the errors made by rankers for two objects for the same

factor (one set for each ranker).

This simply means that the algorithm makes similar mistakes for two objects.

If the value of the factors for two objects are correlated, then this is a reason-

able assumption. For example, two rankers may use the same database of web

pages to compute the pagerank independently. Even though the computation

may differ, the pagerank values depend on the underlying graph. If the pager-

ank of a page is underestimated due to missing edges, then the pagerank of all

the pages that are pointed to this page will also be underestimated resulting

75

in a positive correlation.

σ∗nf Correlation between the errors made by rankers for two different objects for

different factors (one set for each ranker).

Suppose the ranker makes an error determining when a page was last updated

and the last update time is a factor. Now suppose this page links to an-

other page and the pagerank depends on when the links are added (i.e. pages

accumulating links very quickly are demoted). Then, this would effect the

pagerank of pages that it links to and make the errors correlated.

σ∗R Correlation among rankers.

Basically this models the case of a ranker making errors that correlate with

the errors another ranker makes. An easy example of this is the case where a

ranker may use the output of another ranker. This is an explicit relationship

in the case of a meta-search engine. There are also other implicit relationships

where a ranker may rely on another partially for different query types such as

directory lookups or sponsored links.

CHAPTER 7

EXPERIMENTAL EVALUATION

We study how the information and noise in the input rankers affects the performance

of rank aggregation methods. We use five rankers, five factors and 100 objects. For

the PageRank algorithm, we fixed the α3 parameter at 0.85 since we did not observe

any significant dependence on α (when α > 0) in our experiments. The ground

truth weights are set to w = 〈 1
15
, 2

15
, 3

15
, 4

15
, 5

15
〉. We model spam in our model

(V ar(εji`)) by setting δ = 5.0 and β = 0.01. This results in smaller errors in factors

with high scores and low rank, and larger errors in factors with very low scores.

Hence, while good objects will have high scores, bad objects may also get high

scores occasionally. We vary the variance parameter σ2 between 0.1, 1, 5 and 7.5 for

all factors. Increasing the variance models more noise: higher values increase the

likelihood of objects getting undeserved high scores.

We also vary misinformation by changing the weights used by nMI of the

rankers to w′ = 〈 5
15
, 4

15
, 3

15
, 2

15
, 1

15
〉. The remaining 5 − nMI rankers have the same

weights as the ground truth ranker. When nMI = 0, there is no misinformation,

all rankers have the same weights as the ground truth. As nMI increases, the

information about the input factors being transmitted by the rankers decreases.

We call this an increase in misinformation. To see how this is different from noise,

consider the case when we have infinite number of rankers. It is then possible that by

averaging these rankers we are able to average out all the noise. However, the rankers

with incorrect weights suffer from information loss that can never be recovered in

this case. Misinformation models the case when the rankers use weights that differ

from the user’s preferences. For example, the user may not care about recency of

updates to a page in determining the final ranking, but the rankers may. The noise

models the case where rankers incorrectly estimate the score of a factor; this is the

case in many text based spam methods which result in inflated scores for specific

keywords. Other examples of noise are errors made in the pagerank computation

3The α parameter is the probability of navigating to a particular object from another object.

76

77

due to the incompleteness of the underlying web graph and errors in time based

factors due to the frequency of crawls to a site.

Method Description
Av average
Me median
CombMNZ CombMNZ
Pg PageRank
Cfuse Condorcet-fuse
PrOpt precision optimal
Rnd random
Greedy greedy
xIBF iterative best flip opt. after algorithm x
xADJ adjacent pairs opt. after algorithm x
xSubIBF sublist IBF opt. after algorithm x
xCUT cut partitioning after algorithm x

Table 7.1: Legend of algorithms

Given these two settings, we perform tests with and without the adjacent

(ADJ) and iterative best flip (IBF) optimization resulting in three different versions

of each aggregator. Each test is repeated for 40,000 datasets where each dataset

contains its own ground truth ranker and five input rankers. For each performance

measure, we compute the performance of the aggregation algorithms. Table 7.1

lists the aggregation methods used in our tests. We should note that the precision

and TSAP errors are both to be maximized, whereas the Kendall-tau error is to be

minimized.

We perform a pairwise comparison of the aggregation methods 4. We use the

notation xADJ to denote adjacent pairs optimization starting from aggregator x

(and similarly for xIBF). For every pair of aggregation methods Ai, Aj, we calculate

the difference (Ai −Aj) of the performance measure values on each dataset. Based

on the variance of these differences, we obtain a 99.9% confidence interval on the

difference. If this confidence interval includes zero, then the two aggregators are

incomparable (or equivalent). On the other hand, if the confidence interval is always

4For the rank based algorithms, there are 13 aggregators: Av, Me, Pg, PrOpt, CombMNZ,
Cfuse,xADJ, xIBF, RndIBF. For the graph based algorithms, we add the greedy, xCUT and
xSubIBF algorithms.

78

positive (resp. negative), then Aj is better (resp. worse) than Ai, written Aj > Ai

(resp. Aj < Ai). These ordering relations are shown in the graphs of Figures 7.2-

7.6 (precision) and Figures 7.7- 7.11 (Kendall-tau). In each graph, an edge from

aggregator Ai to Aj exists if Ai is a better aggregator than Aj for that performance

measure. To reduce the complexity of the graph, we remove all edges that would be

implied by transitivity.

7.1 Rank Based Algorithms

For the rank based algorithms given in Chapter 4, we perform three types

of experiments. In the first experiment, there is no missing information and the

factors, objects and input rankers are independent from each other. In the second,

each input ranker has a certain percentage of missing objects are not ranked. The

third set of experiments considers several correlations amongst the factors, objects

or input rankers.

7.1.1 Baseline results

Figure 7.1 summarizes the findings for the precision error. We use the no-

tation ∗IBF to denote IBF starting from any initial aggregator, and x∗ to denote

aggregator x with or without optimization. In each box, we list the best three aggre-

gators. However, in most cases, the difference between the performance of the listed

aggregators is very small. When the misinformation is low (nMI = 0) and the noise

is low (σ2 = 0.10), almost all aggregation methods are equivalent. PrOpt reduces

to Av due its tie breaking methodology. When misinformation is low, as the noise

increases, there is a greater need for robustness. In this case PrOpt, Pg and IBF

optimized rankers become the winners while the average and median aggregators do

not produce an orderings that exploits the information provided.

When the noise is low, as misinformation increases (nMI = 1, 2), median

becomes the dominant aggregation method as it is not effected by the outliers. This

is a “bi-partisan” case where the majority of the rankers are correct, but there are

one or two outliers. In these cases, as noise increases, there is a greater need for

robustness. In this case, MeIBF is the clear winner (Me in Figure 7.4(b)) while the

79

PrOpt, Pg*,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*,
CombMNZ, *IBF

PrOpt, Pg,
CombMNZ,

PgADJ
Pgσ2 = 7.5 MeIBF, RndIBF Cfuse Cfuse PgIBF

PrOpt, PgADJ,
CombMNZ

AvIBF AvADJ AvADJ MeIBF, RndIBF PgIBF

PrOpt, CombMNZ
PrOpt, PgIBF,

MeIBF
MeIBF, RndIBF Av Avσ2 = 5.0 Pg, PgADJ

RndIBF,
CombMNZ, Pg,
PgADJ, AvIBF

AvIBF, PgIBF Pg AvADJ

PgIBF Cfuse PrOpt, CombMNZ AvADJ, PgADJ Pg

PrOpt, Pg*, Av*,
Me, CombMNZ

MeIBF, PgIBF, Me Av Avσ2 = 1.0 MeADJ, Cfuse
CombMNZ, Cfuse,

PrOpt
MeADJ Pg AvADJ

MeIBF PgIBF Cfuse AvADJ Me, Pg

Av
PgADJ,

CombMNZ
Me Av Avσ2 = 0.10

PrOpt,*ADJ, *IBF,
Cfuse, CombMNZ

PrOpt, MeADJ,
Cfuse, PgIBF,

MeIBF
MeADJ Pg AvADJ

RndIBF Me PrOpt AvADJ RndIBF

nMI = 0 nMI = 1 nMI = 2 nMI = 3 nMI = 4

(a) Summary of results for precision

high noise PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ Pg Pg

Pg Pg Pg, PgADJ, MeIBF PrOpt, CombMNZ PgADJ

PgADJ PgADJ RndIBF PgADJ PrOpt, CombMNZ

PrOpt, CombMNZ PgADJ MeIBF, PgIBF Pg Av

Pg
Pg, PgIBF, MeIBF,

RndIBF
AvIBF. RndIBF PrOpt, CombMNZ Pg

PgADJ AvIBF, CombMNZ PgADJ Av AvADJ

Pg MeIBF MeADJ Av Av
Av RndIBF Me Pg PrOpt

CombMNZ PgADJ MeIBF PrOpt CombMNZ

PrOpt, Av, Pg MeIBF Me Av PrOpt

*ADJ, *IBF, Cfuse,
CombMNZ

MeADJ MeADJ Pg CombMNZ

low noise Me Cfuse MeIBF CombMNZ Av

less
misinformation

more
misinformation

(b) Summary of results for Kendall-tau

Figure 7.1: Summary of results for the baseline case: no missing objects
and no correlation. The x-axis denotes the misinformation
(nMI). The columns from left to right increase the number
of input rankers that use the weight function w′. The y-axis
denotes the noise (σ2). The rows from bottom to top increase
the maximum variance of noise for the factors. The top-3 ag-
gregators for each misinformation and noise case is displayed.
Part (a) gives the top aggregators using the precision perfor-
mance measure and part (b) gives the top aggregators using
the Kendall-tau performance measure. Refer to Table 7.1 for
the notation of the aggregators.

80

average aggregator produces the worst ranking. The average, in this case, allows for

more information to be considered as compared to Me which ignores a great deal of

information. In the presence of increased noise (Figure 7.6(c)), the Me produces the

second worst ordering. ADJ and IBF optimizations produce rankings that contain

little useful information due to the heavy noise; hence, these aggregators do not

perform as well as Pg and PrOpt.

When noise is low but misinformation is high (nMI = 3, 4), there is a greater

need to incorporate as much information as possible from the input rankers. Hence,

average becomes the best ranker again, also see Figure 7.6(a). This remains true even

in the presence of moderate levels of noise. The average and median aggregators have

a mixture of misinformation, which can not leverage the robustness to give a good

ranking in case of high noise. The ADJ and IBF algorithms give better orderings

over their elementary aggregator counterparts. We note that when the noise is high,

PrOpt, Pg and IBF optimization appears to be best aggregation methods.

We observe that, for most cases, CombMNZ performs similarly to PrOpt in

which an ordering can not be determined in the topological sorting for these two

aggregators. Both aggregators consider the frequency of appearance and average

rank for each object as a determining factor in ordering and their parallel behavior

in the results are shown. Cfuse performs reasonably well in the presence of less

misinformation (nMI = 1, 2) for any noise level, e.g. see Figures 7.3 - 7.4. However,

when misinformation is high (nMI = 3, 4), Cfuse is one of the worst orderings

except in the presence of high noise (σ2 = 7.5). We had unweighted edges in

our implementation of Cfuse, which may be the primary contributing factor to the

performance of this aggregator.

These results for precision remain unchanged for the TSAP performance mea-

sure except for high levels of noise. In the high noise cases, CombMNZ, PrOpt and

Pg appear to be winners but IBF optimization appears to loose its competitiveness.

This is a surprising result as optimizing for positional information, in fact, results in

a loss of information that hurts performance for a measure that relies on positional

information. The results for Kendall-tau error, Figures 7.7 - 7.11, are similar to pre-

cision as well. Note that this performance measure of the objects are in relatively

81

correct order. For instance, for Figures 7.4(a) and 7.9(a) where Me clearly outper-

forms Av, the benefit of using median is reinforced with respect to the Kendall-tau.

While for Av, the objects in the top-K may be incorrect and out of order when the

average aggregator is selected. In part (d), the noise level is a significant contributor

to comparability of aggregators. The precision performance measure concludes the

performing the IBF algorithm on any basic aggregator is a good approach but the

order (minimization of the Kendall-tau) may suffer.

The first difference we note is that for high noise, PrOpt and CombMNZ does

not always do as well since it does not directly optimize for positional information.

For the highest noise value and nMI = 0, 1, 2, PrOpt and CombMNZ performs be

better than all others. However, for nMI = 3, 4, Pg does better. For precision, both

of these aggregation methods have equivalent performance. Since Pg incorporates

information about the objects with missing ranks implicitly, this allows Pg to incor-

porate more useful information about the rankers. MeIBF appears to do very well

(first or second place) in almost all noise cases for nMI = 1, 2. Another interesting

thing that we notice is that for high noise cases, IBF optimizers do not as well as

PrOpt and Pg. Note that, IBF optimizer reduces the error with respect to the input

rankers but ends up with worse performance with respect to the ground ranker for

the high noise cases. Similar to TSAP, more information about the rankers needs

to incorporated in these cases.

82

PgADJ

RndIBF

0.002
CombMNZ

0.003
AvADJ

0.003

MeADJ

0.003

MeIBF
0.002

PgIBF
0.003

AvIBF

0.003

Pg

0.003

CFuse

0.002

PrOpt

0.003

Me

0.002

Av

0.001

8.5E-4

7.5E-4

9.7E-4

0.001

0.001

6.7E-4

6.2E-4

0.001

8.7E-4

0.001

(a) nMI = 0, σ2=0.10

MeIBF

RndIBF0.014

Me

0.018

MeADJ

0.005

CFuse

0.008

CombMNZ

0.018

0.016

PrOpt

0.017

0.014

PgADJ

0.017

0.015

AvADJ 0.015

0.012

PgIBF
0.015

0.012

AvIBF

0.012

0.010

Pg

0.016

0.013

Av

0.013

0.011

(b) nMI = 0, σ2=1.0

83

Av Me
0.100

MeADJ
0.026

AvADJ
0.058

CFuse
0.076

AvIBF
0.017

RndIBF
0.010

MeIBF
0.014

PgIBF
0.008

PgADJ 0.014

Pg

0.017

CombMNZ
0.013

0.010

PrOpt

0.012

0.010

(c) nMI = 0, σ2=5.0

Me Av
0.063

AvADJ
0.080

MeADJ
0.031

CFuse
0.312

AvIBF
0.095

MeIBF
0.008

RndIBF

0.002

CombMNZ

0.009

0.016

PrOpt
0.012

0.019

PgADJ

0.010

0.017

PgIBF

0.008

0.015

Pg

0.006

0.013

(d) nMI = 0, σ2=7.5

Figure 7.2: precision performance for nMI = 0 with different levels of
noise. The graphs (a)-(d) display the topological sort results
of the aggregation methods where the quality of the aggre-
gation method decreases from left to right for each misinfor-
mation (nMI) and noise (σ2). The edge weight indicate how
much more precision is gained between adjacent aggregators.
Refer to Table 7.1 for the notation of the aggregators.

84

AvADJ Av
0.641

RndIBF
0.344

AvIBF
0.014

Pg
0.007

Me
0.007

PrOpt

0.010

CombMNZ
2.0E-4

CFuse
0.010

MeADJ
0.008

PgIBF

0.006

MeIBF

0.008

PgADJ

7.4E-5

4.2E-4

0.002

0.004

0.002

(a) nMI = 1, σ2 = 0.10

AvADJ Av
0.525

Me
0.144

MeADJ 0.060

Pg

0.055

AvIBF

0.024

0.028

RndIBF
0.019

0.024

PgIBF

0.001

0.006

PrOpt
0.010

CombMNZ
6.4E-4

CFuse
0.008

PgADJ

0.012

MeIBF

0.003

0.005

(b) nMI = 1, σ2 = 1.0

85

Av Me
0.128

MeADJ
0.031

AvADJ
0.115

CFuse
0.134

CombMNZ
0.045

RndIBF

0.040PrOpt 0.002

0.007

PgIBF
0.001

MeIBF
0.002

0.007

PgADJ
0.041

AvIBF

0.041

Pg

0.036

(c) nMI = 1, σ2 = 5.0

Av Me
0.081

MeADJ
0.043

AvADJ
0.087

CFuse
0.346

RndIBF

0.099

PrOpt 0.004

PgADJ
0.106

PgIBF

0.009

MeIBF 0.103

CombMNZ

0.104

AvIBF

0.096

Pg

0.100

(d) nMI = 1, σ2 = 7.5

Figure 7.3: Precision performance for nMI = 1 with different levels of
noise. Refer to Figure 7.2 for the description of these graphs.

86

Pg Av
0.722

AvADJ
1.024

AvIBF
0.367

CombMNZ
0.013

PgADJ
0.013

RndIBF 0.009

PgIBF

0.007MeIBF

0.061

0.062CFuse
0.046

PrOpt
0.015

MeADJ
0.007

Me
0.004

(a) nMI = 2, σ2 = 0.10

Pg Av
0.770

AvADJ
0.335

AvIBF
0.307

PgADJ
0.016

PgIBF
0.030

RndIBF
0.035

CombMNZ
0.016

PrOpt 0.018

MeIBF

0.013CFuse

0.002

0.007MeADJ
0.080

Me
0.012

(b) nMI = 2, σ2 = 1.0

87

Me Av
0.029

AvADJ
0.061

MeADJ
0.060

CFuse
0.049

PgADJ 0.032

Pg

0.033

CombMNZ
0.019

0.017

PrOpt

0.019

0.017

AvIBF
0.021

0.021

PgIBF

0.020

0.020

RndIBF
0.025

0.027

MeIBF

0.034

0.035

(c) nMI = 2, σ2 = 5.0

Av

Me

0.128

MeADJ

0.120AvADJ

0.111

0.120CFuse
0.272

CombMNZ

0.095
RndIBF

0.096

PrOpt
0.094

PgIBF

0.005

0.003

MeIBF
0.097

PgADJ

0.092

AvIBF

0.094

Pg

0.089

(d) nMI = 2, σ2 = 7.5

Figure 7.4: Precision performance for nMI = 2 with different levels of
noise. Refer to Figure 7.2 for the description of these graphs.

88

Me CFuse
0.050

MeADJ
0.007

PrOpt
0.016

MeIBF
0.037

RndIBF
0.055

PgIBF
0.009

PgADJ
0.019

AvIBF
0.002

CombMNZ
0.021

AvADJ
0.360

Pg
1.044

Av
0.566

(a) nMI = 3, σ2 = 0.10

Me CFuse
0.205

MeADJ
0.084

MeIBF
0.073

RndIBF
0.017

PrOpt
0.060

PgIBF
0.006

CombMNZ
0.012

AvIBF
0.007

PgADJ
0.038

AvADJ
0.279

Pg
0.426

Av
0.641

(b) nMI = 3, σ2 = 1.0

MeADJ Me
0.217

CFuse
0.197

RndIBF
0.148

MeIBF
0.013

AvIBF
0.020

PgIBF
0.028

CombMNZ 0.092

PrOpt

0.093

PgADJ

0.009

0.008

AvADJ
0.009

0.008

Pg
0.005

Av 0.025

0.020

(c) nMI = 3, σ2 = 5.0

MeADJ Me
0.129

Av
0.215

AvADJ
0.079

CFuse
0.136

AvIBF
0.103

MeIBF 0.010

RndIBF

0.003PgIBF

0.019

0.026

CombMNZ

0.016

PrOpt 0.017

PgADJ

0.017

Pg

0.016

(d) nMI = 3, σ2 = 7.5

Figure 7.5: Precision performance for nMI = 3 with different levels of
noise. Refer to Figure 7.2 for the description of these graphs.

89

PrOpt

CFuse

0.002

PgADJ

0.002CombMNZ

0.002

MeIBF 0.003
PgIBF

0.004

0.005

0.004

0.004

MeADJ

0.003

0.003

0.003

0.002

Me

0.012

0.013

AvIBF
0.012

0.014

Pg

0.011

0.010RndIBF
0.005

AvADJ
0.349

Av
0.580

(a) nMI = 4, σ2 = 0.10

MeIBF CFuse
0.044

AvIBF 0.014

RndIBF

0.011PgADJ

0.034

0.037

CombMNZ

0.005

MeADJ

0.004PrOpt

0.005

PgIBF 0.007Me

0.077

0.079

0.077

0.075

Pg

0.077

0.079

0.077

0.075
AvADJ

0.218

0.218Av
0.576

(b) nMI = 4, σ2 = 1.0

90

Me CFuse
0.017

MeADJ
0.027

AvIBF
0.043

MeIBF
0.042

RndIBF

0.037
PgIBF

0.049

0.050
0.056

PgADJ
0.051

CombMNZ 0.008

PrOpt

0.007Pg

0.017

0.017AvADJ
0.066

Av
0.127

(c) nMI = 4, σ2 = 5.0

MeADJ Me
0.066

Av
0.120

AvADJ
0.042

CFuse
0.045

AvIBF
0.085

MeIBF
0.091

RndIBF

0.087
PgIBF

0.025

0.019

0.023

CombMNZ
0.019

PrOpt
0.018

PgADJ

0.017
Pg

0.002

0.003

0.005

(d) nMI = 4, σ2 = 7.5

Figure 7.6: Precision performance for nMI = 4 with different levels of
noise. Refer to Figure 7.2 for the description of these graphs.

91

Me RndIBF
0.003

CombMNZ

0.004
CFuse

0.004

MeADJ

0.004

PgADJ 0.004

PgIBF

0.004

AvADJ

0.004

MeIBF

0.003

AvIBF

0.004

Av

0.001

0.002

0.002

0.002

0.002

0.002

0.003

0.002

Pg

4.9E-4

0.001

0.001

0.001

0.001

6.5E-4

0.001

8.0E-4

PrOpt
1.0E-4

8.7E-4

(a) nMI = 0, σ2=0.10

RndIBF Me
0.143

MeIBF
0.027

MeADJ
0.041

CFuse
0.017

AvADJ
0.068

PgADJ
0.005

AvIBF
0.012

PgIBF
0.005

PrOpt
0.018

CombMNZ
0.020

Av
0.025

Pg
0.003

(b) nMI = 0, σ2=1.0

92

MeADJ Me
1.949

Av
1.169

AvADJ
0.389

CFuse
0.356

RndIBF
0.420

AvIBF
0.028

MeIBF
0.075

PgIBF
0.299

PgADJ
0.381

Pg
0.449

PrOpt 0.139

CombMNZ

0.139

(c) nMI = 0, σ2=5.0

Av Me
0.121

AvADJ
1.437

MeADJ
0.808

AvIBF
4.849

PgIBF
0.245

CFuse
0.134

RndIBF
0.174

MeIBF
0.271

PgADJ
0.277

Pg
0.622

PrOpt 0.208

CombMNZ

0.216

(d) nMI = 0, σ2=7.5

Figure 7.7: Kendall-tau performance for nMI = 0 with different levels of
noise. The graphs (a)-(d) display the topological sort results
of the aggregation methods where the quality of the aggre-
gation method decreases from left to right for each misinfor-
mation (nMI) and noise (σ2). The edge weight indicate the
difference in swaps between adjacent aggregators. Refer to
Table 7.1 for the notation of the aggregators.

93

CombMNZ PrOpt
1.120

Av
0.951

Pg
2.086

AvADJ
2.524

PgIBF
0.670

AvIBF
0.003

RndIBF
0.057

PgADJ
0.034

Me
0.004

CFuse
0.072

MeADJ
0.018

MeIBF
0.010

(a) nMI = 1, σ2 = 0.10

CombMNZ PrOpt
0.482

Av
0.457

Pg
1.790

Me
1.694

AvADJ
0.165

CFuse
0.582

PgIBF
0.024

AvIBF
0.011

MeADJ
0.027

PgADJ
0.050

RndIBF
0.145

MeIBF
0.052

(b) nMI = 1, σ2 = 1.0

MeADJ Me
2.691

Av
1.031

CFuse
1.182

AvADJ
0.154

PrOpt 1.572

AvIBF 0.055

CombMNZ

1.572

RndIBF

0.106

0.162

PgIBF

0.080

0.136

MeIBF
0.171

0.227

Pg
0.112

0.167

PgADJ

0.327

0.352

0.261

0.321

(c) nMI = 1, σ2 = 5.0

Av Me
2.317

MeADJ
0.462

AvADJ
1.047

CFuse
4.457

AvIBF
1.365

PgIBF
0.069

RndIBF
0.460

MeIBF
0.243

PgADJ
0.138

Pg
0.300

PrOpt 0.213

CombMNZ

0.216

(d) nMI = 1, σ2 = 7.5

Figure 7.8: Kendall-tau performance for nMI = 1 with different levels of
noise. Refer to Figure 7.7 for the description of these graphs.

94

Pg Av
4.320

CombMNZ
4.570

PrOpt
0.141

AvADJ
6.718

PgADJ
1.328

AvIBF
0.024

PgIBF
0.061

RndIBF
0.178

CFuse
0.199

MeIBF
0.066

MeADJ
0.182

Me
0.021

(a) nMI = 2, σ2 = 0.10

Pg Av
3.423

PrOpt
1.705

CombMNZ
0.045

AvADJ
5.634

PgADJ
1.121

PgIBF
0.335

AvIBF
0.047

CFuse
0.100

RndIBF
0.595

MeIBF
0.180

Me
0.291

MeADJ
0.069

(b) nMI = 2, σ2 = 1.0

Av Me
1.951

MeADJ
0.471

CFuse
0.914

AvADJ
0.630

Pg
0.580

PrOpt 0.059

CombMNZ

0.054PgADJ

1.147

1.152

RndIBF 0.287

AvIBF

0.217

MeIBF
0.090

0.159

PgIBF

0.027

0.096

(c) nMI = 2, σ2 = 5.0

MeADJ

Me

2.773

Av

2.851AvADJ

1.597

1.519CFuse
2.050

PgIBF 3.404

AvIBF

3.391RndIBF

0.442

0.455Pg
0.131

MeIBF
0.185

PgADJ

0.139

PrOpt
0.205

0.151

0.198

CombMNZ

0.199

0.145

0.192

(d) nMI = 2, σ2 = 7.5

Figure 7.9: Kendall-tau performance for nMI = 2 with different levels of
noise. Refer to Figure 7.7 for the description of these graphs.

95

MeADJ Me
6.659

CFuse
1.002

MeIBF
0.339

RndIBF
0.285

PgIBF
0.288

AvIBF
0.054

PgADJ
0.059

AvADJ
1.368

PrOpt
6.561

CombMNZ
0.143

Pg
4.657

Av
4.405

(a) nMI = 3, σ2 = 0.10

MeADJ Me
6.902

CFuse
1.330

MeIBF
1.756

RndIBF
0.221

AvIBF
1.219

PgIBF
0.154

PgADJ
0.439

AvADJ
1.304

CombMNZ
4.797

PrOpt
0.016

Pg
2.291

Av
3.821

(b) nMI = 3, σ2 = 1.0

MeADJ Me
4.283

CFuse
4.850

MeIBF 2.997

RndIBF

2.969AvIBF

0.615

0.643PgIBF
0.465

AvADJ
0.608

PgADJ
0.349

Av
0.925

PrOpt 0.032

CombMNZ

0.024Pg

0.344

0.352

(c) nMI = 3, σ2 = 5.0

MeADJ Me
3.018

CFuse
4.151

Av
0.511

AvADJ
0.645

AvIBF
3.518

PgIBF 0.343

RndIBF

0.339MeIBF

0.076

0.080PgADJ
0.581

PrOpt 0.327

CombMNZ

0.330Pg

0.142

0.138

(d) nMI = 3, σ2 = 7.5

Figure 7.10: Kendall-tau performance for nMI = 3 with different levels
of noise. Refer to Figure 7.7 for the description of these
graphs.

96

MeIBF Me
5.960

MeADJ
0.061

RndIBF
0.566

CFuse
0.230

AvIBF
0.592

PgADJ
0.011

PgIBF
0.085

AvADJ
0.764

Pg
2.536

Av
2.274

CombMNZ
0.698

PrOpt
1.118

(a) nMI = 4, σ2 = 0.10

CFuse Me
2.234

MeADJ
0.994

RndIBF 1.178

MeIBF

1.168AvIBF

1.707

1.718PgADJ
0.313

PgIBF
0.039

AvADJ
1.285

Pg
1.660

CombMNZ
1.743

PrOpt
0.443

Av
1.147

(b) nMI = 4, σ2 = 1.0

Me CFuse
5.061

MeADJ
0.909

RndIBF
3.320

MeIBF
0.320

AvIBF
1.409

PgIBF
0.867

PgADJ
0.441

PrOpt 0.400

CombMNZ

0.388AvADJ

0.074

0.086Pg
0.405

Av
0.984

(c) nMI = 4, σ2 = 5.0

Me CFuse
2.882

MeADJ
1.508

Av
3.546

AvADJ
0.275

RndIBF
1.614

MeIBF 0.135

AvIBF

0.190PgIBF

0.621

0.566

PrOpt 0.403

CombMNZ

0.400PgADJ

0.050

0.053Pg
0.414

(d) nMI = 4, σ2 = 7.5

Figure 7.11: Kendall-tau performance for nMI = 4 with different levels
of noise. Refer to Figure 7.7 for the description of these
graphs.

97

Significance of edge weights. The edge weights represent the degree that the

left-hand aggregator outperforms the right-hand aggregator. In the precision opti-

mized topological sorts, the edge weights are generally less than 1. The advantage

of selecting a top aggregator is approximately one object. If the edge weights for

the top aggregators becomes higher, then the benefit of using a top aggregator be-

comes greater. As in Figure 7.10(a) as compared to Figure 7.10(b), Av and Pg are

the first and second aggregators for both noise levels. When σ2 = 0.10, the edge

weight is 4.405 meaning that Av is more than 4 swaps better than Pg while when

σ2 = 1.0, Av is almost 4 swaps better. The number of objects in our framework

and the number of retrieved objects contribute to the limited impact of precision.

In an environment with more objects and lower number of objects in the union of

the rankers, the precision would not be initially so high and improvements can be

made.

For the Kendall-tau optimized topological sorts, the number of swaps neces-

sary to produce the minimal Kendall-tau are the edge weights. Figure 7.7(d) is

a good example of the influence of swaps. The top aggregators are separated by

approximately one swap but the median and average aggregators need more than

one swap to coincide with the ordering of AvADJ. The differences observed between

AvIBF and MeADJ are nearly 5 swaps so even though precision does not make a

strong case for avoiding the median, average and their ADJ variants, the Kendall-tau

performance measure does. If we sum the edge weights from the top aggregator to

the bottom aggregator, such as Figure 7.11(a), there is nearly a 15 swap-advantage

of PrOpt over the Me so the selection of an aggregator is more important but is

not as significant for Figure 7.11(b). The objective in this case is to simply avoid

the bottom aggregators since the majority of swaps occur toward the bottom of

the topological sort. It is interesting to note that the lower performing aggregators

are worse with respect to the Kendall-tau with at least one swap difference. The

rankings outputted by the median and average as compared to the precision optimal

require swaps of objects generally in the lower positions of the list.

98

Notation Description
n number of objects
m number of factors
s number of rankers
w true ranker’s weights
wj weights for ranker j
δ shape parameter where large variance for positive factors near 3
β shape parameter where large variance for negative factors near -3
σ2 the maximum variance in the desired range
σf correlation between two factors of the same object, < 1
σn correlation between two objects for the same factor,< 1
σnf correlation between two different objects for different factors, < 1
σ∗f correlation between two factors of the same object

σ∗n correlation between two objects for the same factor
σ∗nf correlation between two different objects for different factors

σ∗R correlation among rankers

Figure 7.12: Statistical framework symbols and definitions

7.1.2 Missing data

We reissue our experiments for each misinformation and noise level combina-

tion and examine the changes in the best aggregators from our initial evaluation.

For simplicity, we duplicate the symbols and definitions of the statistical model in

Figure 7.12. We run experiments where each ranker is missing 10% and 50% of all

the objects in the database and examine how the choice of aggregator may change.

In Figures 7.13 and 7.14, the summary of the best three aggregators for both the

precision and Kendall-tau performance measures for 10% and 50% missing objects.

With missing objects, there are fewer pairs of objects to compare for IBF and ADJ

optimizations and the median values are based on fewer rankings. In our prior eval-

uation, more misinformation led to the average aggregator (Av) to be the best with

PageRank (Pg) a close second best aggregator. As a result, the effectiveness of these

rankers is reduced. For example, for 10% missing objects, Me is no longer the best

for the cases where there is asymmetry between rankers and *IBF becomes promi-

nent in these cases. As for 50% missing objects, we see that Av and AvADJ become

very prominent for almost all the cases as more and more information needs to be

incorporated. AvADJ provides small amount of robustness over Av and becomes

99

an important aggregator.

100

high noise
PrOpt, Pg*,
CombMNZ

PrOpt, Pg*,
CombMNZ, MeIBF

PgIBF
PrOpt, CombMNZ,

Pg, PgADJ
Pg

MeIBF AvIBF, RndIBF
CombMNZ, PrOpt,
*IBF, Pg, PgADJ

PgIBF
PrOpt, CombMNZ,

PgADJ

AvIBF, RndIBF Cfuse Cfuse MeIBF, RndIBF PgIBF

PrOpt, CombMNZ
PrOpt, Pg*,

CombMNZ, MeIBF
RndIBF, MeIBF Av Av

Pg AvIBF, RndIBF AvIBF, PgIBF Pg, AvADJ AvADJ

PgADJ Cfuse PrOpt, CombMNZ
PrOpt, CombMNZ,

PgADJ
Pg

Av AvIBF Cfuse Av Av

AvADJ
Cfuse, RndIBF,

PgIBF
RndIBF AvADJ AvADJ

Pg, PgADJ, AvIBF MeIBF PgIBF Pg Pg

AvADJ Cfuse, AvIBF Cfuse Av Av
PgADJ PgIBF RndIBF Pg Pg

low noise Av, AvIBF RndIBF PgIBF AvADJ
PrOpt, CombMNZ,

AvADJ

less
misinformation

more
misinformation

(a) precision performance measure

high noise
PrOpt, Pg,
CombMNZ

PrOpt, CombMNZ PrOpt, CombMNZ Pg Pg

PgADJ Pg PgADJ PrOpt, CombMNZ PgADJ

MeIBF PgADJ Pg, MeIBF PgADJ PrOpt, CombMNZ

PgADJ PgADJ PgIBF Av Av
PgIBF PgIBF AvIBF Pg AvADJ

Pg, AvIBF
MeIBF, AvIBF,

RndIBF
MeIBF, RndIBF PrOpt, CombMNZ Pg

AvIBF RndIBF Cfuse, RndIBF Av Av

Cfuse AvIBF AvIBF Pg PrOpt, CombMNZ

PgIBF MeIBF PgIBF AvADJ Pg

Cfuse Cfuse Cfuse Av Av
MeADJ AvIBF RndIBF Pg PrOpt

low noise AvIBF AvADJ AvIBF AvADJ CombMNZ

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.13: 10% Missing Objects. Refer to Figure 7.1 for the full de-
scription of these tables.

101

high noise PrOpt, CombMNZ
PrOpt, Pg,PgADJ

CombMNZ
Pg PrOpt, Pg

Pg, PrOpt,
CombMNZ

Pg, PgADJ PgIBF
PgADJ, PrOpt,

CombMNZ
PgADJ,

CombMNZ
PgADJ

PgIBF
AvIBF, MeIBF,

RndIBF
PgIBF PgIBF Av, AvADJ, PgIBF

Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ

AvIBF
PrOpt, CombMNZ,

AvIBF, Pg
Cfuse, CombMNZ Pg, Cfuse Pg

Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ
AvIBF AvIBF Cfuse Cfuse Pg

Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ

low noise AvIBF AvIBF AvIBF, Cfuse Cfuse Pg

less
misinformation

more
misinformation

(a) precision performance measure

high noise PgIBF PgIBF PgADJ, PgIBF PgADJ AvADJ

PgADJ PgADJ PrOpt, CombMNZ Pg, PgIBF Av, PgADJ, PgIBF

AvIBF PrOpt, CombMNZ Pg
PrOpt, AvADJ,

CombMNZ
Pg, PrOpt,
CombMNZ

Av AvADJ Av Av Av
AvADJ Av AvADJ AvADJ AvADJ
PgIBF PgIBF PgIBF PgIBF PgIBF

Av, AvADJ AvADJ Av Av Av
AvIBF Av AvADJ AvADJ AvADJ
PgIBF PgIBF PgIBF PgIBF, AvIBF AvIBF

AvADJ AvADJ AvADJ Av Av
Av Av Av AvADJ AvADJ

low noise AvIBF AvIBF PgIBF PgIBF, AvIBF AvIBF

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.14: 50% Missing Objects. Refer to Figure 7.1 for the full de-
scription of these tables.

102

7.1.3 Correlated data

Experiments are ran that vary different correlations as discussed in Section 6.

In each test, we vary only one of the correlations.

Correlation between two objects for the same factor for the ground truth

(σn) In these tests, we introduce a correlation between objects for one factor.

Positive correlation is tested in Figure 7.15 and negative correlations in Figure 7.16.

We do not see a significant change in the results for positive correlations. However,

for negative correlations, PrOpt and IBF become more prominent which signals a

need for robustness.

Correlation between two factors of the same object for the ground truth

(σf) In the next set of tests, we introduce correlations between two factors for the

ground truth and consider the case where the correlation is positive in Figure 7.17

and negative in Figure 7.18. Again, for positive correlation, we do not see a big

difference. In case of negative correlations, PrOpt becomes prominent for precision

in low noise cases and Pg becomes prominent for Kendall-tau performance measure.

In high noise cases, Av and AvADJ become the best rankers as more and more

information need to be incorporated from the input rankers.

Correlation between the errors made by rankers for two objects for the

same factor (one set for each ranker) (σ∗n) In these experiments, we assign the

correlated errors of two of the five rankers to be fixed at 0.60. The results are shown

in Figure 7.19. The PrOpt aggregator no longer dominates as the best aggregation

for high noise cases as compared to the other experiments. Me* is robust with

respect to noise in the bi-partisan case when a majority of the rankers align with

the ground truth (nMI = 1, 2). We observe that our IBF optimization performs well

in a large number of cases, including high noise and some misinformation.

Correlation amongst rankers (σ∗R) We performed experiments for positive cor-

relations amongst all the rankers in Figure 7.20. With our low setting of 0.10, there

103

was no significant difference in performance for the precision and Kendall-tau per-

formance measures as compared to our experiments without any correlations.

104

high noise
PrOpt, Pg*,

CombMNZ, MeIBF
PrOpt, Pg*,
CombMNZ

Pg*, *IBF, PrOpt,
CombMNZ

PrOpt, Pg*,
CombMNZ

Pg, PgADJ, PrOpt,
CombMNZ

AvIBF, RndIBF MeIBF, RndIBF Cfuse
RndIBF, MeIBF,

AvIBF
PgIBF

Cfuse AvIBF AvADJ Cfuse MeIBF, RndIBF

PrOpt
PrOpt, Pg*,

CombMNZ, MeIBF
RndIBF, PgIBF,

MeIBF
Pg Pg

Pg, PgADJ,
CombMNZ

AvIBF, RndIBF
PrOpt, CombMNZ,
Pg, PgADJ, AvIBF

PrOpt, CombMNZ,
PgADJ

PrOpt, PgADJ,
CombMNZ

PgIBF Cfuse Cfuse PgIBF PgIBF

Pg MeIBF MeADJ Av Av

PrOpt, CombMNZ,
PgADJ, PgIBF

PgADJ Me Pg AvADJ

AvADJ, AvIBF
PrOpt, PgIBF,

RndIBF
MeIBF AvADJ Me

Av
PrOpt, PgADJ,
MeIBF, Cfuse,

CombMNZ
Me Av Av

AvIBF, PgADJ,
CombMNZ

PgIBF MeADJ Pg AvADJ

low noise
PgIBF, MeIBF,

AvADJ, MeADJ,
Cfuse, PrOpt,

MeADJ PrOpt AvADJ Pg

less
misinformation

more
misinformation

(a) precision performance measure

high noise Cfuse Cfuse MeIBF PrOpt Pg
PrOpt, Pg,
CombMNZ

PrOpt, CombMNZ
RndIBF,

CombMNZ
Pg, MeIBF,
CombMNZ

PrOpt, CombMNZ

MeIBF, RndIBF MeIBF, RndIBF PrOpt, Pg PgADJ PgADJ

CombMNZ PrOpt, CombMNZ PgADJ Pg Pg

PrOpt Pg PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ

Pg PgADJ Pg, MeIBF PgADJ PgADJ

Pg RndIBF MeIBF Av Av
CombMNZ MeIBF RndIBF Pg PrOpt
PrOpt, Av PgADJ MeADJ PrOpt CombMNZ

Av, Pg MeIBF Me Av PrOpt
CombMNZ MeADJ MeADJ Pg CombMNZ

low noise PrOpt, PgIBF Cfuse MeIBF CombMNZ Av

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.15: Objects are positively correlated for one factor of the ground
truth with σn = 0.60. Refer to Figure 7.1 for the full descrip-
tion of these tables.

105

high noise
PrOpt, Pg*, *IBF,

CombMNZ
Pg* Pg*, AvIBF

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

Cfuse
PrOpt, AvIBF,

CombMNZ

PrOpt, MeIBF,
RndIBF,

CombMNZ
Cfuse Cfuse

AvADJ
MeIBF, RndIBF,

Cfuse
Cfuse AvADJ AvADJ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg, PgADJ

Cfuse Cfuse Cfuse Cfuse
PgIBF, AvIBF,

MeIBF, CombMNZ

AvADJ AvADJ AvADJ AvADJ
Av, AvADJ, Me,
MeADJ, Cfuse

PrOpt, CombMNZ
PrOpt, PgADJ, Pg,

CombMNZ
AvIBF Pg, PgADJ Me

Pg
MeIBF, PgIBF,

RndIBF
RndIBF PrOpt, CombMNZ MeADJ

PgADJ AvIBF, Cfuse MeIBF Av Av

Pg Pg, PgADJ Cfuse Av Av

PgADJ
PrOpt, PgIBF,

CombMNZ
RndIBF AvADJ AvADJ

low noise
Av, AvADJ, PgIBF,

CombMNZ
AvIBF

PgIBF, MeIBF,
AvIBF

Pg Me

less
misinformation

more
misinformation

(a) precision performance measure

high noise
PrOpt, Pg*, *IBF,
CombMNZ, Cfuse

PrOpt, CombMNZ,
MeIBF, RndIBF

PrOpt, CombMNZ Pg, PgADJ Pg

AvADJ Pg*, AvIBF Pg*, *IBF
MeIBF, RndIBF,

CombMNZ
PgADJ, MeIBF,

AvIBF,

Av AvADJ AvADJ
PrOpt, PgIBF,

AvADJ
PgIBF, RndIBF,

AvADJ

Cfuse MeIBF MeIBF Pg, PgIBF, MeIBF Pg

MeIBF RndIBF RndIBF
PgIBF, RndIBF,

CombMNZ
PgADJ

RndIBF PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, AvIBF PgIBF, Me

PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ Pg Me

Pg Pg
Pg, PgIBF, AvIBF,

RndIBF
PgADJ Av

PgADJ PgADJ PgADJ, MeIBF PrOpt, CombMNZ MeADJ

Pg PgADJ RndIBF Av Av
Av PgIBF MeIBF, AvIBF AvADJ AvADJ

low noise CombMNZ RndIBF PgIBF Pg PrOpt

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.16: Objects are negatively correlated for one factor of the
ground truth with σn = −0.60. Refer to Figure 7.1 for the
full description of these tables.

106

high noise PrOpt, CombMNZ PrOpt, CombMNZ MeADJ, MeIBF Pg PrOpt, CombMNZ

PgADJ MeIBF PrOpt
PrOpt, PgADJ, Av,

CombMNZ
Av, Pg, PgADJ

MeIBF, Cufse PgADJ CombMNZ PgIBF, AvADJ AvADJ

PrOpt, Pg*, *IBF,
CombMNZ

CombMNZ MeADJ Av Av

Av, Cfuse PrOpt Me Pg Pg

MwADJ, MeIBF
PgADJ, MeIBF,

Cfuse
MeIBF AvADJ AvIBF

Av, AvIBF
PrOpt, PgADJ,
MeADJ, Cfuse,

CombMNZ
Me, MeADJ Av Av

PrOpt, PgADJ,
AvADJ

MeIBF PrOpt, MeIBF Pg AvIBF

MeADJ, MeIBF,
Cfuse, CombMNZ

Me Cfuse AvIBF, CombMNZ Pg

PrOpt, PgADJ,
MeADJ, MeIBF,

Cfuse, CombMNZ
Me, MeADJ Av Av

All Aggregators Me PrOpt Pg AvIBF,
low noise PgIBF Cfuse CombMNZ RndIBF

less
misinformation

more
misinformation

(a) precision performance measure

high noise PrOpt, CombMNZ MeIBF MeIBF PrOpt, CombMNZ PrOpt

PgADJ PgADJ, RndIBF RndIBF Pg CombMNZ
Pg, PgIBF PgIBF MeADJ Av Pg

Pg MeIBF, PgADJ MeADJ Av PrOpt

Av, CombMNZ
AvADJ, MeADJ,

Cfuse
MeIBF Pg Av

PrOpt RndIBF Me, Cfuse PrOpt CombMNZ

Pg, Av MeADJ Me, MeADJ Av PrOpt
PrOpt, AvADJ,
AvIBF, PgIBF

MeIBF, Cfuse MeIBF Pg CombMNZ

MeADJ, PgADJ,
Cfuse, CombMNZ

PgADJ Cfuse CombMNZ Av

MeADJ Me, MeADJ Av PrOpt
All Aggregators MeIBF, Cfuse MeIBF, Cfuse Pg CombMNZ

low noise Me AvADJ, PgADJ CombMNZ Av

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.17: Two factors are positively correlated for the ground truth
with σf = 0.60. Refer to Figure 7.1 for the full description
of these tables.

107

high noise Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ

Pg Pg Pg Pg Pg

Av Av Av, AvADJ Av Av

AvADJ AvADJ
PrOpt, Pg, PgADJ,

CombMNZ
AvADJ AvADJ

Pg
PrOpt, Pg, PgADJ,

CombMNZ
PgIBF

PrOpt, Pg,
CombMNZ

PrOpt, Pg, PgADJ,
CombMNZ

Pg, PrOpt,
CombMNZ

PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ

PgADJ Pg Pg, PgADJ Pg Pg
PgIBF PgADJ PgIBF, MeIBF PgADJ PgADJ

Av, AvIBF
Av*, PgADJ,

PrOpt, CombMNZ
AvADJ, PgADJ,

AvIBF, CombMNZ
Av*, PrOpt, PgADJ

PrOpt, Av*,
PgADJ,

CombMNZ

AvADJ, PgADJ,
PgIBF

PrOpt, PgIBF,
CombMNZ

PrOpt, Pg, PgIBF,
MeADJ, Av, Cfuse

PgIBF, MeADJ,
Cfuse

Pg, PgIBF,
MeADJ, Cfuse

low noise
PrOpt, Pg, PgIBF,

CombMNZ
AvIBF MeIBF Pg, MeIBF MeIBF

less
misinformation

more
misinformation

(a) precision performance measure

high noise Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ
PgIBF PgADJ, PgIBF PgIBF PgIBF PgIBF

Av Av Av Av Av
AvADJ AvADJ AvADJ AvADJ AvADJ
PgIBF PgADJ, PgIBF PgADJ, PgIBF PgADJ, PgIBF PgADJ, PgIBF

Pg Pg Pg, PgADJ Pg Pg
PgADJ PgADJ PgIBF PgADJ PgADJ
PgIBF PgIBF AvIBF PgIBF PgIBF

Av, Pg Av, Pg Pg Av, Pg Av, Pg

CombMNZ PgIBF, CombMNZ Av AvIBF, PgIBF PgIBF, CombMNZ

low noise
PrOpt, AvIBF,

PgIBF
AvIBF, PgADJ PgADJ, PgIBF AvADJ, PgADJ PgADJ, AvIBF

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.18: Two factors are negatively correlated for the ground truth
with σf = −0.60. Refer to Figure 7.1 for the full description
of these tables.

108

high noise MeIBF RndIBF
AvIBF, MeIBF,

RndIBF
PrOpt, PgADJ,

CombMNZ
Pg

AvIBF, PgIBF,
RndIBF

AvIBF, MeIBF PgIBF Pg, *IBF
PrOpt, PgADJ,

CombMNZ
PrOpt, PgADJ,

CombMNZ
PgIBF

PrOpt, PgADJ,
CombMNZ

Cfuse PgIBF

PrOpt, CombMNZ MeIBF MeIBF, RndIBF Av , Pg Av

Pg, PgADJ, MeIBF AvIBF, RndIBF AvIBF, PgIBF
PrOpt, PgADJ,

AvADJ,
CombMNZ

AvADJ

PgIBF, RndIBF PgIBF PrOpt, CombMNZ PgIBF Pg

PrOpt, Av*, Pg*,
CombMNZ

MeIBF Me Av Av

MeADJ, MeIBF,
Cfuse

PrOpt, PgADJ,
CombMNZ

MeADJ Pg AvADJ

Me, RndIBF Cfuse Cfuse AvADJ Pg, Me

Av
PrOpt, PgADJ,
MeADJ, MeIBF,

Cfuse, CombMNZ
Me Av Av

PrOpt, Pg*, Cfuse,
CombMNZ, *ADJ,

AvIBF, MeIBF
PgIBF MeADJ Pg AvADJ

low noise Me Me PrOpt AvADJ RndIBF

less
misinformation

more
misinformation

(a) precision performance measure

high noise PrOpt, CombMNZ MeIBF MeIBF MeIBF Pg

MeIBF RndIBF RndIBF RndIBF PgADJ

Pg PrOpt, CombMNZ AvIBF PrOpt, Pg PrOpt, CombMNZ

PrOpt, CombMNZ MeIBF, RndIBF MeIBF Pg Av

Pg PgADJ RndIBF PrOpt, CombMNZ Pg

PgADJ PgIBF, AvIBF AvIBF Av AvADJ

Pg MeIBF MeADJ Av Av
Av RndIBF Me Pg PrOpt

CombMNZ PgADJ, MeADJ MeIBF PrOpt CombMNZ

PrOpt, Pg*,
CombMNZ, Cfuse,

Av*, MeADJ,
MeIBF

MeIBF Me, MeADJ Av PrOpt

Me, RndIBF MeADJ MeIBF Pg CombMNZ
low noise Cfuse Cfuse CombMNZ Av

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.19: Positive correlation between errors performed by rankers
for two objects for the same factor with σ∗n =
〈0.60, 0.60, 0.0, 0.0, 0.0〉. Refer to Figure 7.1 for the full de-
scription of these tables.

109

high noise
PrOpt, PgADJ,
PgIBF, MeIBF,

CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

MeIBF, RndIBF
PrOpt, PgADJ, Pg,

CombMNZ
Pg

Pg, RndIBF Cfuse
PrOpt, Pg*, AvIBF,

CombMNZ
PgIBF

PrOpt, PgADJ,
CombMNZ

AvIBF AvADJ, MeADJ Cfuse MeIBF, RndIBF PgIBF

PrOpt, CombMNZ
PrOpt, PgIBF,

MeIBF
MeIBF, RndIBF Av Av

Pg, PgADJ
Pg, PgADJ,

AvIBF, RndIBF,
CombMNZ

PgIBF Pg, AvADJ AvADJ

PgIBF, MeIBF Cfuse AvIBF PgADJ Pg

PrOpt, Av*, Pg*,
CombMNZ

MeIBF, PgADJ,
Cfuse

Me Av Av

MeADJ, Cfuse
PrOpt, PgADJ,
PgIBF, RndIBF

CombMNZ
MeADJ Pg AvADJ

MeIBF AvIBF Cfuse AvADJ Pg, Me

Av
PrOpt, PgADJ,
MeADJ, MeIBF,

Cfuse, CombMNZ
Me Av Av

PrOpt, Pg*, Cfuse,
CombMNZ, *ADJ,

AvIBF, MeIBF
PgIBF MeADJ Pg AvADJ

low noise Me Me PrOpt AvADJ RndIBF

less
misinformation

more
misinformation

(a) precision performance measure

high noise PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ Pg Pg

Pg Pg Pg, MeIBF PrOpt, CombMNZ PrOpt, CombMNZ

PgADJ PgADJ PgADJ, RndIBF PgADJ PgADJ

PrOpt, CombMNZ PgADJ MeIBF Pg Av

Pg MeIBF PgIBF, RndIBF Av Pg

PgADJ Pg, RndIBF AvIBF PrOpt, CombMNZ AvADJ

Pg MeIBF Me, MeADJ Av Av
Av RndIBF MeIBF Pg PrOpt

CombMNZ MeADJ RndIBF PrOpt CombMNZ

PrOpt, Pg*,
CombMNZ, Cfuse,

Av*, MeADJ,
MeIBF

MeIBF, MeADJ Me Av PrOpt

Me, RndIBF Cfuse MeADJ Pg CombMNZ
low noise Me MeIBF CombMNZ Av

less
misinformation

more
misinformation

(b) Kendall-tau performance measure

Figure 7.20: Positive correlation amongst the rankers with σ∗R = 0.10. Re-
fer to Figure 7.1 for the full description of these tables.

110

7.2 Approximation Algorithms

We evaluate the performance of the rank aggregation and MFAS algorithms

within the statistical framework. The list of algorithms used in our study are given

in Table 7.1. The notation r to denote the ground truth, r1, . . . , r5 to denote the

input rankers and rA to denote the result of any one of the algorithms in our study.

Note that for graph algorithms, a topological sort of the aggregators is performed

to find an ordering as discussed earlier.

Kendall-tau Lower Bound. We can compute a straightforward lower bound on

the Kendall-tau which we will compare the algorithms to. Let nij be the number of

rankers which rank object oi above object oj. Then Eav ≥ minτ =
∑
i<j min(nij, nji).

Recall that we define Eav in Section 4.1 for rank aggregation algorithms and Sec-

tion 5.2.3 for the SubIBF algorithm. For each aggregation algorithm, an upper

bound on the relative approximation ratio is as follows,

optz(rA) =
Eav −minτ
minτ

.

In the case if minτ = 0 when we consider low noise and less misinformation

situations, we reassign minτ = 1 to avoid a division by zero. This approximation

ratio addresses the closeness of the error to the lower bound in which the objective

is to have optz(rA) be close to 0. This is the measure we will use for the algorithmic

performance of all our algorithms.

Statistical Evaluation of Aggregation. We also compare how well the aggre-

gate ranker rA compares to the “solution” of the aggregation problem by computing

its Kendall-tau distance to the ground truth given, τ(rA, r). We will call this error

the Statistical Error.

We re-examine the 20 different test settings by varying the noise and misin-

formation levels in the aggregation scenario as before. Noise is introduced for each

factor. The ground truth ranker uses weights 1
15
, 2

15
, 3

15
, 4

15
, 5

15
. As misinformation

increases, we add more rankers with the reverse weights 5
15
, 4

15
, 3

15
, 2

15
, 1

15
. For each

test setting, we generate 40,000 instances.

111

Algorithm Max Avg
Av 0.525 0.311
Me 0.506 0.347
Pg 0.433 0.265

AvADJ 0.42 0.242
MeADJ 0.458 0.269
PgADJ 0.369 0.218
AvIBF 0.366 0.218
MeIBF 0.353 0.212
PgIBF 0.368 0.218

RndIBF 0.354 0.212
PrOpt 0.626 0.289
Cfuse 0.345 0.205

CombMNZ 0.571 0.282
SubIBF 1.33 0.44

AvSubIBF 0.44 0.272
MeSubIBF 0.482 0.277
PgSubIBF 0.369 0.219

Greedy 1.47 0.481
CUT 0.358 0.213

AvCUT 0.358 0.213
MeCUT 0.359 0.213
PgCUT 0.359 0.213

Table 7.2: Error to the lower bound (optz)

7.2.1 Kemeny Optimization Results

We first report on the Kemeny optimization performance of the algorithms

as measured by optz. The results given in Table 7.2 which shows the average and

worst case relative error with respect to the lower bound. This average and worst

case performance are computed over all the 800,000 instances. In the average case,

we observe that xADJ, xIBF, xSubIBF and xCUT produced a better lower bound

with respect to the Av, Me and Pg aggregators. Cfuse has the best result with an

average of 20% over the lower bound over all misinformation and noise settings. The

xIBF and xCUT aggregators are relatively unaffected by the initial ranking while

xADJ and xSubIBF are. Due to the local optimizing nature of ADJ and SubIBF,

the reduction of Kendall-tau is restricted, which produces the higher optz results.

With regard to the maximum relative error, Greedy and SubIBF have the highest

112

high noise Cfuse Cfuse MeIBF Cfuse Cfuse
MeIBF MeIBF Cfuse MeIBF MeIBF
RndIBF RndIBF RndIBF RndIBF RndIBF

PgSubIBF MeCUT MeIBF Cfuse Cfuse
CUT CUT RndIBF MeIBF AvCUT

PgCUT PgCUT AvCUT CUT MeCUT

PgADJ SubIBF SubIBF Cfuse Cfuse
AvADJ PgSubIBF MeIBF MeIBF PgSubIBF
AvCUT CUT RndIBF RndIBF PgCUT

PgADJ SubIBF SubIBF Cfuse PgSubIBF
AvADJ PgSubIBF Cfuse MeIBF Cfuse

low noise MeCUT Cfuse MeIBF RndIBF AvCUT

less
misinformation

more
misinformation

Figure 7.21: Best aggregate rankers w.r.t. lower bound. Refer to Figure
7.1 for the full description of these tables.

optz since the bi-connected components may be contain a unique ordering of the

objects.

For the twenty variations according to the noise and misinformation, we show

the best few algorithms in Figure 7.21. We display the best three aggregate rankers.

PgSubIBF, MeIBF and RndIBF appear to dominate the results for the majority

of settings, which is probably because the other algorithms give greater weight to

misleading data. The greedy algorithm appears to have poor performance, indicat-

ing that it may remove edges suboptimally. The definition of an edge weight sets

the graph based algorithms apart from the rank aggregation algorithms. The graph

based algorithms perform a ranker aggregation in which the edge weight captures

the dominant ordering for a pair of objects. The rank aggregation algorithms, on

the other hand, focus on the ranks for the pair of objects and use more information

in order to determine the aggregate ranker. The graph based algorithms do not

use the ranks; hence there is information loss which causes these algorithms not to

produce competitive aggregate rankings.

113

Algorithm CPU (sec) Stat. Error
Av 0.002 33.612
Me 0.001 37.974
Pg 0.006 31.645

AvADJ 0.009 33.377
MeADJ 0.009 35.541
PgADJ 0.013 31.816
AvIBF 0.097 32.266
MeIBF 0.097 32.392
PgIBF 0.092 32.076

RndIBF 0.111 32.438
PrOpt 0.002 31.752
Cfuse 0.008 34.607

CombMNZ 0.001 31.748
SubIBF 0.172 32.149

AvSubIBF 0.148 34.412
MeSubIBF 0.184 36.289
PgSubIBF 0.329 32.804

Greedy 0.034 32.419
CUT 0.224 32.253

AvCUT 0.224 32.261
MeCUT 0.223 32.261
PgCUT 0.368 32.26

Table 7.3: Runtime and average error to the ground truth

Computational Cost. In Table 7.3, we display run time of each algorithm. As

can be expected the simplest algorithms are quickest, and as the algorithms become

more complex, the run time may increase by as much as two orders of magnitude.

From the graph based algorithms, Greedy is the only algorithm that is competitive

to the most of the rank aggregation algorithms.

7.2.2 Statistical Performance Results

The average statistical error for each algorithms is given in Table 7.3, and

Figure 7.22(a) shows the best few performers depending on the particular aggre-

gation scenario parameterized by noise and misinformation. In Table 7.3, we see

that the error from the statistical framework varies from 31 to 38 disagreements.

As expected, Me has a higher average number of disagreements since the algorithm

114

ignores (some correctly ordered) rankers. In general, the graph based algorithms are

more computationally expensive and do not significantly reduce the statistical error.

Among the optimization methods, e.g. xADJ, xIBF, xSubIBF and xCUT, our xIBF

algorithm seems to be the better choice with respect to the Kemeny optimization,

cost and statistical error.

When only considering the rank aggregation algorithms as shown in Fig-

ure 7.22(b), the Av and Pg algorithms are amongst the best algorithms as mis-

information increases. PrOpt and Pg are the best aggregate algorithms in the case

of high noise. However, when we include the graph based algorithms, the Greedy

and SubIBF algorithms outperform both Av and Pg when there is more misinforma-

tion. The Greedy and PgSubIBF only outperform the rank aggregation algorithms

in highest noise and misinformation cases. Me seems to dominate when there is a

balance of noise and misinformation in the middle of the table. The graph based al-

gorithms outperform the other rank aggregation algorithms in our statistical frame-

work because of their combination of global and local ordering of the objects. In the

global ordering, the objects are grouped. The local ordering allows for the global

relationships between objects to be removed. The objects in each partition can then

be ordered only with respect to each other.

7.3 TREC Data Collection

We use the rankings submitted by the participants of the Text REtreival Con-

ference (TREC) as input rankers to the rank aggregation algorithms. Three datasets

(TREC-3, TREC-5 and TREC-9) are used each comprising of 50 queries, which was

also used in [97]. Each participant devises a system, which retrieves 1000 documents,

and returns a ranking of these documents for a particular query. In TREC, human

evaluators are used to determine if a document is relevant or irrelevant. The rele-

vant documents are then compared to these rankings of up to 1000 documents using

different types of performance evaluators including the precision and TREC-style

average precision as described previously.

For each query, we repeat the following 50 iterations: we select the top-K

(K = {5, 10, 20, 50}) documents from a randomly set of 5 input rankers as input

115

high noise PgSubIBF
PrOpt, CombMNZ,

PgSubIBF
PrOpt, CombMNZ Pg Greedy

PrOpt, CombMNZ Pg Pg, PgADJMeIBF PrOpt, CombMNZ Pg

Pg PgADJ RndIBF PgADJ PgADJ

PrOpt, CombMNZ PgSubIBF MeIBF, PgIBF Greedy Greedy
Pg PgADJ AvIBF, RndIBF Pg SubIBF

PgSubIBF *CUT *CUT PrOpt, CombMNZ Av

Pg SubIBF SubIBF Greedy Greedy
Av MeIBF MeIBF Av SubIBF

CombMNZ *CUT, MeSubIBF MeADJ SubIBF Av

Av SubIBF SubIBF Av SubIBF
*ADJ, *IBF,

Pg*,*CUT,*SubIBF,
Cfuse, PrOpt,

CombMNZ

MeSubIBF MeSubIBF Greedy Greedy

low noise Me MeIBF Me Pg PrOpt

less
misinformation

more
misinformation

(a) all algorithms

high noise PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ Pg Pg

Pg Pg Pg, PgADJ, MeIBF PrOpt, CombMNZ PgADJ

PgADJ PgADJ RndIBF PgADJ PrOpt, CombMNZ

PrOpt, CombMNZ PgADJ MeIBF, PgIBF Pg Av

Pg
Pg, PgIBF, MeIBF,

RndIBF
AvIBF. RndIBF PrOpt, CombMNZ Pg

PgADJ AvIBF, CombMNZ PgADJ Av AvADJ

Pg MeIBF MeADJ Av Av
Av RndIBF Me Pg PrOpt

CombMNZ PgADJ MeIBF PrOpt CombMNZ

PrOpt, Av, Pg MeIBF Me Av PrOpt

*ADJ, *IBF, Cfuse,
CombMNZ

MeADJ MeADJ Pg CombMNZ

low noise Me Cfuse MeIBF CombMNZ Av

less
misinformation

more
misinformation

(b) rank aggregation algorithms only

Figure 7.22: Best aggregate rankers w.r.t. ground truth using the
Kendall-tau performance measure. Refer to Figure 7.1 for
the full description of these tables.

116

to the rank aggregation methods. We compute the TREC-style average precision

comparing the aggregate ranker to the relevant documents determined by human

evaluators. For each query, we find the mean average precision over the 50 iterations

for each value of K and aggregator. We display the mean average precision over all

queries for each aggregator.

top-5 top-10 top-20 top-50 Best Overall
Av 0.2769 0.1805 0.1109 0.0548 0.6231
Me 0.251 0.1697 0.1051 0.0525 0.5783
Pg 0.2884 0.1882 0.1147 0.0562 0.64751

AvIBF 0.2835 0.1857 0.1126 0.0548 0.6366
MeIBF 0.284 0.1863 0.1131 0.0549 0.6383
PgIBF 0.2862 0.1865 0.1132 0.055 0.6409
AvADJ 0.2755 0.1815 0.1111 0.0546 0.6227
MeADJ 0.2582 0.172 0.1058 0.0527 0.5887
PgADJ 0.2516 0.1876 0.1112 0.0559 0.6063
RndIBF 0.2724 0.1759 0.1094 0.0548 0.6125
PrOpt 0.2637 0.1806 0.1113 0.0562 0.6118
CFuse 0.284 0.1858 0.1106 0.0531 0.6335

CombMNZ 0.2697 0.1877 0.1147 0.0562 0.6283

Table 7.4: TREC-3 Results

top-5 top-10 top-20 top-50 Best Overall
Av 0.2289 0.1428 0.0828 0.0387 0.4932
Me 0.2012 0.1274 0.0758 0.0357 0.4401
Pg 0.2346 0.1463 0.0844 0.0388 0.5041

AvIBF 0.232 0.1453 0.0835 0.0385 0.4993
MeIBF 0.2251 0.1458 0.0837 0.0375 0.4921
PgIBF 0.2135 0.1405 0.0836 0.0386 0.4762
AvADJ 0.218 0.1391 0.0828 0.0385 0.4784
MeADJ 0.2078 0.1302 0.0771 0.036 0.4511
PgADJ 0.196 0.1459 0.0841 0.0388 0.4648
RndIBF 0.2036 0.1454 0.0807 0.0384 0.4681
PrOpt 0.2139 0.1458 0.0843 0.0387 0.4827
CFuse 0.2216 0.1444 0.0828 0.0382 0.487

CombMNZ 0.2077 0.1408 0.0818 0.0376 0.4679

Table 7.5: TREC-5 Results

We show in Tables 7.4- 7.6 the mean average precision over the 50 queries in

117

top-5 top-10 top-20 top-50 Best Overall
Av 0.176 0.1033 0.0599 0.0272 0.3664
Me 0.1418 0.0888 0.0531 0.0247 0.3084
Pg 0.1808 0.1065 0.0608 0.0272 0.3753

AvIBF 0.1741 0.105 0.0606 0.0276 0.3673
MeIBF 0.1786 0.1057 0.0607 0.0274 0.3724
PgIBF 0.1791 0.1052 0.0607 0.0275 0.3725
AvADJ 0.1764 0.1025 0.0602 0.0276 0.3666
MeADJ 0.1503 0.0916 0.054 0.0251 0.321
PgADJ 0.1569 0.1062 0.061 0.0277 0.3518
RndIBF 0.1761 0.1053 0.0605 0.0263 0.3682
PrOpt 0.1781 0.1063 0.0606 0.027 0.372
CFuse 0.1723 0.1051 0.055 0.0265 0.3589

CombMNZ 0.1768 0.1065 0.0606 0.02591 0.3698

Table 7.6: TREC-9 Results

each TREC data collection. We bold the best two aggregators for each column. The

last column sums the error from each top-K for each aggregator to determine which

are the best aggregators overall. We see throughout these results that Pg produces

the best aggregators for the majority of values of K. The CombMNZ and Condorcet-

fuse aggregators only perform well in Table 7.4 for most top-K values; however these

methods are not one of the best overall. The xIBF, xADJ and PrOpt are among the

aggregators that perform second best. We observe that certain aggregators perform

best under different circumstances. Our xIBF aggregators tend to give a higher

mean average precision than the standards CombMNZ and Condorcet-fuse.

7.4 Real Data

We have tested five aggregation methods on a small sample (6 queries) using

the following search engines for rankers:

118

queries computer viruses, death penalty, mining coal gold silver,

photography, wireless communications

rankers Altavista, Clusty, Dogpile, Excite, Google, Looksmart,

Metacrawler, MSN, Search, Teoma, Yahoo

aggregators Average, Median, Median with IBF optimization,

PageRank, Precision Optimal

For each query and every pair of aggregation methods, we determined manually

which aggregator was superior. To do this, we used the pair of objects with highest

rank discrepancy in the two aggregate rankings, and then manually determined

which object was more relevant to the query. The results between every pair of

rankers were averaged over queries. The relative performance of these aggregators

on this set of queries is summarized in the figure below.

PrOpt MeIBF

Av MePg

Figure 7.23: small sample real dataset results

As can be observed in Figure 7.23, the optimal aggregator is Precision Op-

timal and PageRank aggregators. The average variance in the rank of an object

over the rankers was high and a clustering of the rankings provided by the different

rankers revealed only one significant cluster, indicating little asymmetry between

the rankers. To find a cluster among the rankers, we constructed a graph where

each ranker is a vertex and each edge has a weight that corresponds to the aver-

age Kendall-tau distance between the two rankers for the above studied queries.

Assuming the rankers are not all using the incorrect weights, we can assume that

there is little misinformation in this setting. As a result, we conclude that the we

are in the high noise low misinformation aggregation scenario, and according to our

results within the statistical framework, the optimal aggregator should be Precision

Optimal and PageRank, which agrees with what was determined empirically.

119

Our results indicate that through a somewhat qualitative analysis of the ranker

results, the level of noise and misinformation can be roughly determined and leads

to the correct choice of aggregator from within the statistical framework.

Our experimental results reveal which aggregation methods work well in which

aggregation scenarios. In a practical setting, one does not know apriori which

aggregation scenario one is in, hence it is not easy to determine which method to

use. We give some results using the results from search engine queries and based on

human evaluation of the aggregator outputs. Based on these (small sample) results,

we conclude that the Precision Optimal or PageRank aggregation is optimal with

the context of our limited sample size.

Based on a simplistic analysis of the ranker data, we conclude that the aggre-

gation scenario is the high-noise, small misinformation case, where our statistical

framework indicates that the optimal aggregator should be the Precision Optimal

aggregator, which is in accordance with our results.

CHAPTER 8

DETERMINING MISINFORMATION AND NOISE

8.1 Introduction

In the previous chapters, we have shown that the choice of the optimal ranker

depends on two main factors: the level of noise and misinformation the rankers

bring with respect to the ground truth. In most real life situations, the ground

truth is not known. In this chapter, we develop methods to identify the specific

noise and misinformation scenario for input rankers without foreknowledge of the

ground truth. These methods allow us to choose the best ranker for each scenario.

We expect that by dynamically adapting the rank aggregation strategy, we will be

able to outperform any static aggregation method. Note that the method used for

predicting the best aggregation method should be easy to compute and should not

require large amounts of memory. We show that our methods satisfy both criteria.

In order to estimate the level of misinformation, we cluster the rankers with

respect to some measure of closeness such as precision or Kendall-tau. Each cluster

is meant to represent a different opinion. We then compute the quality of clusters

by comparing distances within and across clusters. The higher the quality of the

clusters, the higher the amount of asymmetry between the rankers, which we inter-

pret as misinformation. Next, we develop a measure of noise by finding the variance

of ranks for the same object across different rankers. We then show that using these

two measures, we are able to find the the correct level of misinformation and noise

of rankers for a specific query. We illustrate the benefit of this approach using the

statistical model.

8.2 Clustering of Rankers

Given a set of rankers, r1, . . . , rs, a greedy approach is used to cluster the

rankers into C disjoint clusters. The objective is to cluster rankers with the highest

similarity together. Assume that for every pair of rankers (ri, rj), sim(i, j) refers

to the given measure of similarity between the rankers. We assume sim(i, j) is a

120

121

normalized measure. In the following, we use average precision as our similarity

measure. However, it is also possible to use (1− τ ′) for measure of similarity as well

where τ ′ is a normalized version of Kendall-tau. To cluster, we place each ranker

in a different cluster. We then merge clusters with the highest similarity until there

are exactly C clusters. The similarity between two clusters C1 and C2 is given by

the average of all pairwise similarity computations.

simAV G(C1, C2) =
1

|C1| ∗ |C2|
∑

ri∈C1,rj∈C2

sim(i, j) (8.1)

Note that it is also possible to compute the similarity by finding the maximum

similarity between any two rankers in the given two clusters:

simMAX(C1, C2) = max{sim(i, j)|ri ∈ C1, rj ∈ C2} (8.2)

In the following, we test both methods of computing similarity.

Clustering Algorithm. The input to the function makeClusters is the set of

rankers, r1, . . . , rs, similarity function, sim, and the target number of clusters, C.

The output is the C clusters where each ranker is assigned a cluster identifier. This

algorithm allows clusters of size 1. This algorithm makes use of the similarity func-

tion, as described above, which could be either the maximum or average similarity.

1: function makeClusters({r1, . . . , rs}, sim, numclusters) returns clusters

2: for i=1 to s do

3: clusters(i) = i /* mark each ranker with a different cluster */

4: total = s /* number of clusters */

5: while total > numclusters do

6: bestSim← 2

7: idx1← 0, idx2← 0 /* merge candidates */

8: for i=1 to total-1 do

9: for j=i+1 to total do

10: /* retrieve from clusters those rankers labeled by i or j respectively */

11: if sim(Ci, Cj) < bestSim then

122

12: idx1 = i, idx2 = j

13: bestSim← sim(Ci, Cj)

14: k ← getRankers(idx1) /* get all rankers labeled as idx1 */

15: clusters← labelRankers(k, idx2) /* re-label k as idx2

16: total = total - 1

17: return clusters

8.3 Identification of Misinformation and Noise

C1

C2

a b c

d e f

Figure 8.1: width of cluster C1 and C2 (in black), distance between clus-
ters C1 and C2 (in gray)

Once the rankers have been grouped into C clusters, we now must evaluate the

quality of these rankers as represented by the clusters. We describe two approaches

to determine misinformation and noise, which are (1) cluster quality, and (2) vari-

ance of ranks. We determine the threshold for misinformation and noise levels using

cluster quality and variance.

Our clustering methods places similar rankers in the same cluster. We need

to measure how close the clustered objects are. To accomplish this, we compute

two values: inter-cluster width and intra-cluster distance. The inter-cluster width

computes how far away the rankers in a single cluster are. The smaller the width,

the better quality is that specific cluster. The intra-cluster distance measure how far

away a pair of clusters are. The larger the distance, the better the cluster quality.

We combine these two measures to compute overall quality of clusters as discussed

below.

Distance within clusters (width w). Let ri, rj be two rankers. Let C denote

the set of rankers grouped together in a cluster and |C| represent the size of this

123

cluster. We compute for all distinct pairs of rankers (ri, rj ∈ C), the width of the

cluster as follows:

widthC =

∑|C|
i,j=1,i 6=j(1− sim(ri, rj))

|C|∗|C−1|
2

(8.3)

Distance across clusters (distance dist). Let C1 and C2 be two clusters. Let

rL ∈ C1 be the set of rankers that are grouped in cluster C1 and rR ∈ C2 be the set

of rankers that are grouped in cluster C2. We compute for all pairs of rankers from

the two clusters (rL, rR), the average distance across two clusters as follows:

distLR =

∑|C1|
L=1

∑|C2|
R=1(1− sim(rL, rR))

|C1| ∗ |C2|
(8.4)

The above width and distance equations could be modified to be the maximum

width or distance across clusters instead of the average width or distance. In our

experimentation, we consider both the maximum and average precision.

Cluster quality. Suppose there are C clusters. Let wi, wj be the width of two

clusters Ci, Cj, respectively, and distij be the distance between these clusters. We

can now compute the similarity every distinct pair of clusters, denoted as cluster

quality Q, as follows:

Q(C) =
|C|∑
i=1

|C|∑
j=i+1

wi + wj
2 ∗ distij

(8.5)

Both the width and distance are normalized on a scale [0,1], where values closer to

0 denotes higher similarity. For example, when all rankers are identical and there

are two clusters, the width of each cluster is 0 and the distance between each these

clusters is 0. In order to handle the zero case (when distance = 0 or width = 0),

we assign the insignificant ε = 0.0001. The epsilon removes the divide by zero case.

When both width and distance are zero, the cluster quality becomes 1, which is the

worst case scenario. The cluster quality is considered high if the Q value is low. In

addition, epsilon is used for any width zero which may happen for clusters of size

greater than 1.

124

rank r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
1 16 16 16 16 16 16 16 16 6 6 6 6 6 6 6
2 96 96 96 96 96 96 96 96 8 8 8 8 8 8 8
3 8 8 8 8 8 8 8 8 79 79 79 79 79 79 79
4 6 6 6 6 6 6 6 6 95 95 95 95 95 95 95
5 79 63 79 79 79 63 79 63 100 100 100 100 100 100 100
6 63 79 63 63 63 79 63 79 16 16 5 16 16 16 16
7 38 38 38 38 38 38 38 38 5 5 16 5 5 5 5
8 95 95 95 95 95 95 95 95 99 99 99 99 99 99 99
9 92 92 92 92 92 92 92 92 96 96 96 96 96 96 96
10 1 1 45 1 1 1 1 1 62 62 62 62 62 62 62

Table 8.1: top-10 objects from 15 rankers

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
r1 0 10 9 10 10 10 10 10 6 6 6 6 6 6 6
r2 10 0 9 10 10 10 10 10 6 6 6 6 6 6 6
r3 9 9 0 9 9 9 9 9 6 6 6 6 6 6 6
r4 10 10 9 0 10 10 10 10 6 6 6 6 6 6 6
r5 10 10 9 10 0 10 10 10 6 6 6 6 6 6 6
r6 10 10 9 10 10 0 10 10 6 6 6 6 6 6 6
r7 10 10 9 10 10 10 0 10 6 6 6 6 6 6 6
r8 10 10 9 10 10 10 10 0 6 6 6 6 6 6 6
r9 6 6 6 6 6 6 6 6 0 10 10 10 10 10 10
r10 6 6 6 6 6 6 6 6 10 0 10 10 10 10 10
r11 6 6 6 6 6 6 6 6 10 10 0 10 10 10 10
r12 6 6 6 6 6 6 6 6 10 10 10 0 10 10 10
r13 6 6 6 6 6 6 6 6 10 10 10 10 0 10 10
r14 6 6 6 6 6 6 6 6 10 10 10 10 10 0 10
r15 6 6 6 6 6 6 6 6 10 10 10 10 10 10 0

Table 8.2: precision similarity matrix

Example. Let’s look at an example when nMI = 7 and σ2 = 0.10, meaning 7 of

the 15 rankers use the reverse weight function. In Table 8.1, the first 10 objects of

the 15 rankers are shown and Table 8.2 displays the precision between each pair of

rankers. In the case of two clusters, cluster1 (C1) groups rankers r1-r8 and cluster2

125

(C2) groups r9-r15. The widths, distance and cluster quality are:

w1 = 0.10

w2 = 0.0001

dist12 = 0.3625

Q(C1, C2) = 0.1+0.0001
2∗0.3625

= 0.1379

Variance of Ranks. While the cluster quality is used to measure the misinfor-

mation, we introduce the variance of ranks measure to compute the amount of noise

in the rankers. Let n be the distinct number of objects in the input rankers. Let

rank(rj, oi) be the rank of oi in ranker rj. For each cluster C, we compute the

mean of the variance in the ranks over all objects. Note that if an object is not

ranked by a ranker then we assign it the default rank of K+1 where K is the current

retrieval size. If two rankers are missing the same objects, the objects would reduce

the variance measure, indicating an agreement between the two rankers in line with

the intended meaning of this measure.

1: ranks← empty /* n-by-s */

2: vars← empty /* 1-by-n */

3: V ar ← empty

4: for i=1 to n do

5: for j=1 to s do

6: ranks(i, j) = rank(oi, rj)

7: vars(i) = var(ranks(i)) /* variance of ranks for oi */

8: V ar = mean(vars) /* avg. variance over all objects */

9: return V ar

8.4 Experimental Evaluation

In this section, we describe experiments that illustrate the validity of our

approach for determining noise and misinformation. Our aim is to use the statistical

model with different noise and misinformation settings and determine whether we

can identify boundary conditions using our methods for different scenarios. We will

126

PrOpt, CombMNZ PrOpt, CombMNZ
PrOpt, Pg,
CombMNZ

PrOpt, Pg,
CombMNZ

Pg, CombMNZ,
PrOpt, Cfuseσ2 = 7.5 Pg Pg PgADJ PgADJ PgADJ

PgADJ PgADJ PgIBF, Cfuse Cfuse PgIBF

PrOpt PrOpt, CombMNZ Cfuse Cfuse Avσ2 = 5.0 CombMNZ Pg PrOpt, CombMNZ Pg AvADJ

Pg PgADJ Pg PrOpt, CombMNZ Pg

CombMNZ
PgADJ, PrOpt,

Cfuse, CombMNZ
Me Av Avσ2 = 1.0 Pg*, PrOpt Pg, PgIBF, MeIBF MeADJ Pg AvADJ

AvADJ RndIBF PrOpt CombMNZ Me

Av, AvIBF PrOpt, Cfuse Me Av Avσ2 = 0.10
PgADJ, MeADJ,

CombMNZ
PgADJ, CombMNZ PrOpt Pg AvADJ

AvADJ, PgIBF,
PrOpt, Cfuse

Pg, PgIBF, MeIBF MeADJ CombMNZ AvIBF

nMI = 0 nMI = 2 nMI = 7 nMI = 8 nMI = 13

(a) precision results

high noise PrOpt, CombMNZ PrOpt, CombMNZ MeIBF MeIBF Pg

Pg Pg RndIBF RndIBF PgADJ, MeIBF

MeIBF MeIBF, RndIBF PrOpt, CombMNZ
PrOpt, Pg,
CombMNZ

PrOpt, RndIBF,
CombMNZ

Pg PgADJ PgADJ, MeIBF Pg Av

CombMNZ PgIBF PgIBF PrOpt, CombMNZ Pg, AvADJ

PrOpt Pg RndIBF PgADJ PrOpt

Pg Cfuse MeADJ Av Av
Av PgADJ Me Pg PrOpt

AvIBF, PgIBF MeIBF Cfuse CombMNZ CombMNZ

Av, Pg Cfuse Me Av PrOpt

*ADJ, *IBF, PrOpt,
Cfuse, CombMNZ

MeIBF MeADJ Pg CombMNZ

low noise Me MeADJ Cfuse CombMNZ Av

less
misinformation

more
misinformation

(b) Kendall-tau results

Figure 8.2: Summary of results for the baseline case with 15 input
rankers. Refer to Figure 7.1 for the full description of these
tables.

127

also use these boundary conditions to decide which rank aggregation method to

use. We assume that queries in our study will consist of mostly correct information,

in which the number of rankers using the reverse weight function is less than the

number of rankers using the true weight function. In our setup, we keep the number

of factors set to 5 and the noise (σ2) vary between 〈0.10, 1.0, 5.0, 7.5〉. We increase

the number of rankers to 15. The 15 input rankers gives us ample information to

classify both noise and misinformation. We also changed the misinformation levels

to be nMI = 〈0, 2, 7〉, where nMI = 2 means two rankers are using the reverse weight

function. As a reminder, the (ground truth) weight function is w = 〈 1
15
, 2

15
, 3

15
, 4

15
, 5

15
〉

and the reverse weight function is w′ = 〈 5
15
, 4

15
, 3

15
, 2

15
, 1

15
〉.

We investigate the impact of our approach by varying K (the number of ob-

jects returned by the rankers) = 〈10, 20, 30〉. Due to this change in the number of

input rankers and varying of K, we execute our baseline experiments again (e.g.

no correlation and no missing information for the 13 aggregators). We want to see

whether or not there is a difference in the top aggregators across different selections

of K and number of rankers. We also vary the number of clusters C in our exper-

iments, which we assign C = 〈2, 3〉. When C = 2 and low noise level, there is a

distinct partitioning of the rankers. However when C = 3, there are two clusters

that are nearly identical with the remaining cluster equi-distance from the other two

clusters. Since we vary both K and C, we have six sets of experiments for deriving

the ranker information.

Clustering of Rankers
(using avg. or max. precision)

Cluster
Quality

Variance
of Ranks

Average
width and distance
computed with avg.

precision

Maximum
width and distance

computed with max.
precision

Figure 8.3: Flow chart of misinformation and noise evaluation

128

We compute the cluster quality for each combination of clusters and variance

of ranks for each cluster. We show a flow chart in Figure 8.3 to identify the dif-

ferent types of evaluation methods used. We begin by clustering the rankers. As

mentioned previously, these clusters are selected using either the average or maxi-

mum precision. Now the cluster quality can be calculated by computing the widths

and distances using either the average or maximum precision. As we form clusters

using the maximum or average precision, we also compute the cluster quality using

the maximum or average precision. Also, the rank variance for each cluster can be

computed, which is independent of the width and distance calculations. Given each

K and C, there are six result sets, three result sets using average precision to cluster

and three result sets using maximum precision to cluster.

(min) 0.2517483 0.2142998 0.241482
σ2 = 7.5 (mean) 0.6339355 0.6384475 0.7126436

(max) 0.9504219 0.9529506 0.9458219
(min) 0.1873687 0.0985956 0.2334417

σ2 = 5.0 (mean) 0.5792157 0.5564963 0.5867503
(max) 0.9281250 0.9049145 0.9067086
(min) 0.0005000 0.0001000 0.0001111

σ2 = 1.0 (mean) 0.4100831 0.1329626 0.1334516
(max) 1.0000000 0.6666709 0.5804870
(min) 0.0010000 0.0001000 0.0001000

σ2 = 0.10 (mean) 0.7756248 0.0157210 0.0158917
(max) 1.0000000 0.4231538 0.3100234

nMI = 0 nMI = 2 nMI = 7

Table 8.3: Average cluster quality of top-10 objects, 2 clusters, using
average precision to cluster. The x-axis denotes the misin-
formation (nMI) when there are 15 input rankers. The y-axis
denotes the noise (σ2). Each misinformation and noise case
displays the minimum, mean and maximum cluster quality
observed in the 40,000 datasets.

We then report the minimum, maximum and mean values for the cluster qual-

ity and rank variance. We display in Tables 8.3 - 8.6 the results from taking the

top-10 objects and forming two and three clusters using average precision. The

general trend we observe shows that it is hard to distinguish between nMI = 2

and nMI = 7 cases using this measure. As expected, the measure does not depend

129

(min) 0.000000 0.000000 0.000000
σ2 = 7.5 (mean) 5.298782 6.464934 6.165487

(max) 22.133333 22.312500 21.937500
(min) 0.000000 0.000000 0.000000

σ2 = 5.0 (mean) 3.514492 5.281215 4.565962
(max) 20.933333 22.333333 18.428570
(min) 0.000000 0.000000 0.000000

σ2 = 1.0 (mean) 0.639310 0.746333 0.718639
(max) 7.750000 11.000000 6.853896
(min) 0.000000 0.000000 0.000000

σ2 = 0.10 (mean) 0.043294 0.0513666 0.051265
(max) 1.727273 3.218182 1.282468

nMI = 0 nMI = 2 nMI = 7

Table 8.4: Variance of ranks of top-10 objects, 2 clusters, using average
precision to cluster. The x-axis denotes the misinformation
(nMI) when there are 15 input rankers. The y-axis denotes the
noise (σ2). Each misinformation and noise case displays the
minimum, mean and maximum rank variance observed in the
40,000 datasets.

(min) 0.0001000 0.0001000 0.0001000
σ2 = 7.5 (mean) 0.5741046 0.5233971 0.6221042

(max) 0.9523810 0.9600000 0.9600000
(min) 0.0001000 0.0001000 0.0001000

σ2 = 5.0 (mean) 0.5128798 0.4105165 0.5046919
(max) 0.9339975 0.9459459 0.9411765
(min) 0.0002500 0.0001000 0.0001000

σ2 = 1.0 (mean) 0.3134411 0.1627706 0.1850388
(max) 1.0000000 1.0000000 1.0000000
(min) 0.0005000 0.0001000 0.0001000

σ2 = 0.10 (mean) 0.8299089 0.2407070 0.2214130
(max) 1.0000000 1.0000000 1.0000000

nMI = 0 nMI = 2 nMI = 7

Table 8.5: Average cluster quality of top-10 objects, 3 clusters, using
average precision to cluster. Refer to Table 8.3 for a full de-
scription of the table.

130

(min) 0.000000 0.000000 0.000000
σ2 = 7.5 (mean) 5.828739 5.857973 6.653365

(max) 22.333333 22.500000 22.50000
(min) 0.000000 0.000000 0.000000

σ2 = 5.0 (mean) 3.604112 3.751862 4.366549
(max) 22.250000 21.571430 21.500000
(min) 0.000000 0.000000 0.000000

σ2 = 1.0 (mean) 0.550212 0.580480 0.642011
(max) 8.909091 13.090910 8.750000
(min) 0.000000 0.000000 0.000000

σ2 = 0.10 (mean) 0.018619 0.021374 0.033739
(max) 2.181818 1.000000 1.316667

nMI = 0 nMI = 2 nMI = 7

Table 8.6: Variance of ranks of top-10 objects, 3 clusters, using average
precision to cluster. Refer to Table 8.4 for a full description
of the table.

on the size of the clusters but the degree of agreement and disagreement between

rankers. As the two different types of rankers have the same weights in both cases,

the cluster quality should be the same in both cases. However, there is a noticeable

difference between nMI = 0 case and the other cases. Hence, the measure is useful

for detecting the presence of asymmetry between rankers. We note however that

the cluster quality becomes more or less the same for all misinformation cases as the

noise increases. In these cases, noise masks the misinformation. As noise increases,

the number of common objects among the rankers decrease and hence there is less

rank information to use when clustering objects and the rank values are less reli-

able. As a result, it is harder to use cluster quality as a way to distinguish between

different misinformation cases.

One thing we notice is that for nMI = 0, the cluster quality drops for moderate

noise levels. This is probably due to grouping high and low noise rankers in two

different clusters. However, the cluster quality still remains a decisive factor for

determining whether misinformation exists. As noise increases further, all rankers

appear the same and hence the cluster quality increases again.

Now, we discuss particular influences of imposing different clustering approaches,

different retrieval sizes (K) and different cluster sizes (C).

131

Effect of average precision vs. maximum precision in clustering. When

using max precision, we decide to include a ranker in a cluster if it is very similar

to one of the rankers. This may result in clusters where some rankers are not very

similar to each other. In average precision, we include a new ranker in a cluster

based on the average distance to the existing rankers. In this case, two different

clusters may appear the same with respect to this measure due to the averaging,

making the clusters more uncertain. When using the maximum precision in deciding

the clusters, the average cluster quality and rank variances increase slightly. The

exception to this generalization is when σ2 = 0.10, in which the cluster quality and

rank variance are unaffected. When σ = 1.0, the differences are very low, e.g. 2% in

cluster quality and less than 1 rank position in rank variance. As expected, low noise

does not significantly impose wrong ordering of the objects; thus the cluster quality

and rank variance does not vary significantly. For nMI = 0, the cluster quality and

rank variance is the most affected as σ2 increases. The largest difference between

using the average precision to cluster and using the maximum precision to cluster is

approximately a 20% change in the cluster quality. Since there is no misinformation,

the misordering of objects is a direct result of the noise level, which is observed in

this large discrepancy. For the remaining cases, nMI = 2, 7 and σ2 = 5.0, 7.5,

less misinformation (nMI = 2) has lower differences than in more misinformation

(nMI = 7) as well as lower noise (σ2 = 5.0) has lower differences than in the high

noise (σ2 = 7.5).

Effect of retrieval size K. When increasing K, the rank variance increases since

the number of possible ranks increase. For two clusters when nMI = 0 and σ2 = 0.10,

the cluster quality decreases signifying that there are decreasing number of identical

rankers. Recall that we set δ = 5.0 and β = 0.01, which means that there are greater

errors added to the factors as we proceed down the ranker. With the increase of

K, the δ and β are contributing to the ordering of the objects as well as the noise

level, hence the cluster quality does not reach 1. In the other misinformation and

noise levels, the cluster quality increases by a small percentage of approximately

2% for each increase in K. For three clusters, we observe the decrease in cluster

132

quality when σ2 = 0.10 in all misinformation levels. The largest decrease occurs

when nMI = 0 and there are 3 clusters, which has the average cluster quality of

0.829 (top-10), 0.681 (top-20) and 0.569 (top-30). For the higher noise levels, the

cluster quality increases. The largest increase occurs for 3 clusters when nMI = 0

and σ2 = 1.0, which has the cluster quality of 0.31 (top-10), 0.40 (top-20) and 0.45

(top-30).

Effect of cluster size C. In our tests, there are only two true clusters. When

we try to find three clusters in low noise cases, two clusters contain more or less

identical items. For cluster quality, we see that the mean values decrease from two

clusters to three clusters for the higher noise cases. The range in cluster quality

for three clusters is larger than with two clusters. The rank variance decreases

from two clusters to three clusters for all misinformation and noise cases, except for

σ2 = 〈5.0, 7.5〉, nMI = 0. In those cases, the increase in rank variance is small, e.g.

less than one rank position.

Given change in the number of input rankers, we repeat an experiment for

the best aggregator using 15 input rankers and top-10 objects. The results of these

experiments are shown in Figure 8.2. We consider the first 3 columns of each

table indicating that the majority of the input rankers are applying the true weight

function. For both precision and Kendall-tau, we calculate the best aggregator over

these 12 cells. However, in the case where there is more than one aggregator for

a rank, the next ranked aggregator received the next available rank. For instance

when considering the Kendall-tau results for σ2 = 7.5 and nMI = 2, both PrOpt

and CombMNZ have rank 1, Pg has rank 3, MeIBF and RndIBF have rank 4 and

the remaining aggregators have rank 6. For precision, the top aggregators over the

12 cells are CombMNZ, PrOpt and PgADJ. For Kendall-tau, the top aggregators

over the 12 cells are Pg, MeIBF and CombMNZ. We use these aggregators as the

static aggregators when trying to choose the best aggregator. We want to prove

that using the best aggregator in each cell is better than using one of these static

aggregators in terms of precision and Kendall-tau. We select the best aggregator

for each class, which we show in Figure 8.4.

133

σ2 = 7.5 CombMNZ PrOpt PrOpt
σ2 = 5.0 PrOpt PrOpt Cfuse
σ2 = 1.0 CombMNZ PgADJ Me
σ2 = 0.1 Av PrOpt Me

nMI = 0 nMI = 2 nMI = 7

(a)

σ2 = 7.5 PrOpt PrOpt MeIBF
σ2 = 5.0 Pg PgADJ PgADJ
σ2 = 1.0 Pg Cfuse MeADJ
σ2 = 0.1 Av Cfuse Me

nMI = 0 nMI = 2 nMI = 7

(b)

Figure 8.4: (a) Best aggregators by class using precision results, (b) Best
aggregators by class using Kendall-tau results

Choosing the best aggregator. In order to choose the best method to aggregate

the input rankers, we apply the naive Bayesian supervised learning model. This

model has two phases. The first phase is to determine the probability of a query or

a set of input rankers belong to a specific misinformation-noise case. Also, we have

to consider the penalty associated with misclassifying a query. The second phase

applies the computations of the first phase to new queries.

We call each misinformation-noise case a class, we have 12 classes. We identify

a numerical class identifier in the table below.

Within each class, we generate 40,000 datasets. We compute and record the

cluster quality and rank variance from each dataset, which we call a 2-d point

(x1, x2). For each class with 40,000 points, we compute the mean and covariance

of (x1, x2). We will assume that each class of data sets can be presented as a

2-d Gaussian with the given mean and covariance for this class. We must also

understand the penalty of misclassifying a data point. To illustrate this, suppose

σ2 = 7.5 4 8 12
σ2 = 5.0 3 7 11
σ2 = 1.0 2 6 10
σ2 = 0.1 1 5 9

nMI = 0 nMI = 2 nMI = 7

134

we misclassify a set of rankers with true class ci in another class cj. Then, there is

a cost involved with this decision. In this case, instead of using the top aggregator

in ci, we will end up using the top aggregator Aj in cj. We have to measure how

bad the aggregator Aj would do in class ci which is the true class for this data set.

We use a cost matrix (12x12 matrix) that works as follows. For each class ci, cj, we

compute the penalty of misclassification

1. if the true class of the point is ci and

2. if the selected class of the point is cj.

We can apply any performance measure to use as the penalty cost. Let aggregator Ai

be the top aggregator for class ci and aggregator Aj be the top aggregator for class

cj. In the case of Kendall-tau, we compute τi(Ai) which is the average Kendall-tau of

aggregator Ai in class ci, and τi(Aj) which is the average Kendall-tau of aggregator

Aj in class ci. Each entry in the cost matrix is Cost(ci, cj) = τi(Aj) − τi(Ai) and

then normalized such that
∑
j Cost(ci) = 1. In the case of precision, we compute

pri(Ai) which is the average precision of aggregator Ai in class cj and pri(Aj) which

is the average precision of aggregator Aj in class ci. The cost matrix has entries of

Cost(ci, cj) = pri(Ai)− pri(Aj).
For each new query (dataset), we perform the following:

1. Generate a ground truth ranker and input rankers and compute the new cluster

quality and rank variance, x∗1, x
∗
2

2. Compute the best class for x∗1, x
∗
2 by applying the naive Bayes theorem

3. Select the lowest cost computation

4. Aggregate using the top aggregator for the selected class

5. Compare the performance of the best class aggregator with each static aggre-

gator in terms of both precision and Kendall-tau performance measures

We first use the statistical model to produce the ground truth ranker and input

rankers. We cluster the rankers and compute the cluster quality and rank variance.

135

Next, we use the naive Bayes theorem to model each class’s discrete conditional

probability distribution. Since we assume continuous values, we use a conditional

Gaussian distribution which is estimated by computing the mean (µi) and covariance

(Σi) from the first phase for each class ci. We compute the probability of x∗1, x
∗
2

belonging to class ci using the formula

prob(x∗1, x
∗
2|ci) =

1

2π ∗ det Σ
1/2
i

e−
1
2

(x−µi)′Σ−1
i (x−µi)

We are in fact interested in prob(ci|x∗1, x∗2). By Bayesian theorem, we can write this

as:

prob(ci|x∗1, x∗2) = prob(x∗1, x
∗
2|ci) ∗

prob(ci)

prob(x∗1, x
∗
2)

As prob(x∗1, x
∗
2) is common to all the classes, it is simply a scaling factor. Similarly,

we assume that each class is equally likely in our simulation. Hence, prob(ci) = 1/12.

As a result, we can simply write:

prob(ci|x∗1, x∗2) ∝ prob(x∗1, x
∗
2|ci)

As we want to find the most likely class, we are simply using the prob(x∗1, x
∗
2|ci)

values to order the classes. As a result, we do not need to compute the real value

of prob(ci|x∗1, x∗2). Hence, we use prob(x∗1, x
∗
2|ci) in our class decision computations

instead of prob(ci|x∗1, x∗2). We can compute the best class for point (x∗1, x
∗
2) for each

class using the decision cost given below:

DecisionCost(ci) =
∑
j

p(x∗1, x
∗
2|ci) ∗ Cost(cj, ci)

The lowest decision cost identifies the estimated class in which that class’s aggregator

is executed to determine the error.

We compute the performance of the static and top aggregators with respect

to the ground truth r. Let A denote the selected top aggregator and B denote

any static aggregator. For the precision performance measure, we compute the

136

performance using

average(
pr(r, A)− pr(r, B)

pr(r, B)
)

and the performance evaluation for Kendall-tau is slightly modified and becomes

average(
τ(r, B)− τ(r, A)

τ(r, B)
)

. In terms of precision, we want to maximize while in Kendall-tau we want to

minimize. In the case where the performances are equivalent or the benefit ratio

has a denominator is zero, the performance should be fixed to 0 (for precision) and

1 (for Kendall-tau).

We also consider the accuracy of the classifier. The ideal situation would be

to have all new points correctly classified into the associated classes but as we see

with the cluster quality and rank variance values, this may be hard in some cases.

However, we can identify how wrong the naive Bayes classifier performed. If the true

and selected class are the same, then there is no misclassification. However, in the

case where the true and selected class are in different classes, this may significantly

degrade the performance.

8.5 Analysis and Discussion

We conduct four experiments in order to evaluate the performance improve-

ments using Bayes theorem and the accuracy associated with this cost-based classi-

fication method. In the first experiment, we run a optimal classification approach in

which we use the top aggregator in each class, as outlined in Figure 8.4. We compare

this optimal classification approach to each of the static aggregators. This experi-

ment shows the best performance achievable with respect to each static aggregator.

In the second experiment, we run the Bayesian classification technique. We then

compare this classification method to each of the static aggregators. We consider

the minimum, maximum and average performance for each class. The minimum

value refers to the best performance of the static aggregator. The maximum value

refers to the best performance of the optimal classification or cost-based classifica-

tion approach. The third experiment computes the average performance over all

137

classes, not individually as we do in the first two experiments. The last experiment

examines the accuracy of the cost-based classification classifier. We now discuss the

results of these experiments with respect to precision and Kendall-tau.

Optimizing performance using precision. We display in Figures 8.5-8.7 the

optimal classification and cost-based classification performance for each static ag-

gregator with the objective of maximizing the precision. As we compare each class’s

mean performance of both the optimal classification and cost-based classification

approach, we show the how close the cost-based classification method reaches the

optimal classification method. In Figure 8.5, we see that the optimal classification

approach for class σ2 = 0.1, nMI = 7 is 0.227 while the cost-based classification

approach reaches 0.223. In this case, the cost-based classification approach does

not reach the best possible performance. When σ2 = 7.5, nMI = 0, the cost-based

classification approach has the same performance as the optimal classification ap-

proach. In this case, CombMNZ is the designated rank aggregation method thus

there is no performance improvement in the optimal classification approach, but the

cost-based classification approach misclassifies the query into other classes, which

actually makes better decisions.

In Figure 8.6, PrOpt is the designated rank aggregation in 4 of the 12 classes,

which shows no performance improvements. When PgADJ is the static aggregator

(Figure 8.7), we see some classes that show performance improvements using the

cost-based classification approach but do not reach the performance achieved by

applying the optimal classification method. In the table below, we display the

average precision over the 12 classes. We find the average precision for each class

and then compute the mean of the average precision. We observe that the cost-

based classification approach performs close to the optimal classification approach.

Also, the static aggregator PrOpt that rivals both the cost-based classification and

optimal classification approaches. The cost-based classification approach does not

strongly outperform PrOpt since PrOpt is the top aggregator in several classes.

When executing the cost-based classification approach, we also record the

accuracy count for each class. Each row in the table below gives the number of

138

min 0.000 -0.333 -0.500σ2 = 7.5 mean 0.000 0.000 0.000
max 0.000 0.333 0.500
min -0.143 -0.167 -0.375σ2 = 5.0 mean 0.000 0.000 0.003
max 0.250 0.167 0.750
min 0.000 -0.125 -0.250σ2 = 1.0 mean 0.000 0.001 0.103
max 0.000 0.250 0.667
min -0.100 -0.100 -0.100σ2 = 0.1 mean 0.000 0.000 0.227
max 0.111 0.111 0.667

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -0.200 -0.250 -0.333σ2 = 7.5 mean 0.000 0.000 0.000
max 0.333 0.333 0.333
min -0.167 -0.143 -0.200σ2 = 5.0 mean 0.000 0.000 0.000
max 0.167 0.200 0.333
min -0.111 -0.111 -0.143σ2 = 1.0 mean 0.000 0.000 0.079
max 0.125 0.125 0.667
min -0.100 -0.100 -0.111σ2 = 0.1 mean 0.000 0.000 0.223
max 0.111 0.111 0.667

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.5: Precision performance results using CombMNZ as a static ag-
gregator. The x-axis denotes the misinformation (nMI) when
there are 15 input rankers. The y-axis denotes the noise (σ2).
Each misinformation and noise case displays the minimum,
mean and maximum precision performance improvement ob-
served in the 40,000 queries. Part (a) displays the improve-
ment when all queries are correctly classified in terms of mis-
information and noise and part (b) displays the improvement
when using Bayes Theorem.

139

min -0.250 0.000 0.000σ2 = 7.5 mean 0.000 0.000 0.000
max 0.333 0.000 0.000
min 0.000 0.000 -0.375σ2 = 5.0 mean 0.000 0.000 0.003
max 0.000 0.000 0.750
min -0.111 -0.125 -0.250σ2 = 1.0 mean 0.000 0.001 0.022

max 0.125 0.250 0.600
min -0.100 0.000 -0.100σ2 = 0.1 mean 0.000 0.000 0.003
max 0.111 0.000 0.429

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -0.200 -0.333 -0.500σ2 = 7.5 mean 0.000 0.000 0.000
max 0.250 0.250 0.200
min -0.143 -0.125 -0.143σ2 = 5.0 mean 0.000 0.000 0.000
max 0.143 0.143 0.125
min -0.111 -0.100 -0.125σ2 = 1.0 mean 0.000 0.000 0.000
max 0.125 0.111 0.125
min -0.100 -0.100 -0.200σ2 = 0.1 mean 0.000 0.000 0.000
max 0.111 0.111 0.125

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.6: Precision performance results using PrOpt as a static aggre-
gator. Refer to Figure 8.5 for a full description.

optimal classification 8.5518
cost-based classification 8.5364

CombMNZ 8.3385
PrOpt 8.5360
PgADJ 8.4466

140

min -0.333 -0.250 -0.500σ2 = 7.5 mean 0.006 0.005 0.005
max 0.333 0.500 0.500
min -0.167 -0.222 -0.375σ2 = 5.0 mean 0.006 0.005 0.006
max 0.286 0.333 0.750

min -0.111 0.000 -0.250σ2 = 1.0 mean 0.001 0.000 0.060
max 0.125 0.000 0.667
min -0.100 -0.100 -0.100σ2 = 0.1 mean 0.000 0.000 0.077
max 0.111 0.111 0.429

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -0.333 -0.333 -0.500σ2 = 7.5 mean 0.006 0.005 0.005
max 0.333 0.500 0.500
min -0.222 -0.250 -0.250σ2 = 5.0 mean 0.006 0.005 0.005
max 0.333 0.333 0.400

min -0.111 -0.125 -0.250σ2 = 1.0 mean 0.001 0.000 0.037
max 0.125 0.250 0.800
min -0.100 -0.100 -0.111σ2 = 0.1 mean 0.000 0.000 0.073
max 0.111 0.111 0.667

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.7: Precision performance results using PgADJ as a static aggre-
gator. Refer to Figure 8.5 for a full description.

new queries that are classified in each class, e.g. the sum of each row is therefor

40,000. In the case of class 1, nearly all queries are correctly identified as being class

1. In the case of class 2 and 4, CombMNZ is the top aggregator and the majority

of the cost-based classification is evenly divided. Since class 3, 5, 7, 8 and 12 have

the same top aggregator (PrOpt), a majority of new queries are evenly distributed

across these classes and are correctly identified. We notice that classes 6, 9 and

141

10 are never selected as a new query’s class. These classes use the top aggregators

of PgADJ or Me, which have a high penalty value (e.g. a high probability in the

normalized cost matrix) with respect to the other aggregators. This means that the

decision cost associated with these classes are too high to be selected.

1 2 3 4 5 6 7 8 9 10 11 12
1 29985 904 1463 880 1548 0 1597 1587 0 0 382 1654
2 514 13883 2385 13672 2324 0 2281 2451 0 0 76 2414
3 0 5211 5885 5101 5873 0 5907 6063 0 0 0 5960
4 0 2110 7170 2189 7175 0 7118 7124 0 0 0 7114
5 0 13 7443 17 7597 0 7547 7745 0 0 1969 7669
6 0 452 7882 440 7827 0 7734 7733 0 0 37 7895
7 0 507 7893 501 7733 0 7845 7741 0 0 0 7780
8 0 1424 7311 1431 7543 0 7459 7494 0 0 0 7338
9 0 3 7726 2 7904 0 7845 7908 0 0 883 7729
10 0 181 8045 162 7892 0 8090 7824 0 0 10 7796
11 0 233 7993 236 7794 0 7947 7954 0 0 0 7843
12 0 603 7869 582 7744 0 7813 7782 0 0 0 7607

Optimizing performance using Kendall-tau. We show in Figures 8.8-8.10

performance improvements for the Kendall-tau performance measure. In Kendall-

tau, we consider the number of disagreements, in which the values refer to the swap

difference between the static and non-static aggregators.

We now look at the performance results for Kendall-tau. When looking at the

mean, the negative values indicate that the static aggregator has better Kendall-tau

count and by how much on the average. We should note that negative values can be

misleading. We see in a majority of classes with the minimum value is much further

from zero than the maximum value. A negative mean value are indicative of larger

negative values and smaller positive values. The negative mean values are relatively

small implying that the two aggregators under comparison are roughly equivalent.

In Figure 8.8 when σ2 = 7.5, nMI = 2, the optimal classification mean values

has the same performance as the cost-based classification approach. In another case

when σ2 = 0.1, nMI = 7, the optimal classification mean is 0.925 and cost-based clas-

sification mean is 0.915. Once again, the cost-based classification approach does not

142

min -1.000 -2.000 -1.267σ2 = 7.5 mean 0.002 -0.001 -0.001
max 0.667 0.333 0.778
min 0.000 -7.000 -1.000σ2 = 5.0 mean 0.000 0.015 0.038
max 0.000 0.875 0.833
min 0.000 -5.000 -0.692σ2 = 1.0 mean 0.000 0.369 0.622
max 0.000 0.900 0.974
min -1.000 -2.000 0.000σ2 = 0.1 mean 0.000 0.416 0.926
max 0.667 0.889 0.974

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -2.000 -3.000 -0.600σ2 = 7.5 mean -0.002 -0.001 0.001
max 0.500 0.750 0.500
min -4.000 -6.000 -1.000σ2 = 5.0 mean -0.011 0.014 0.033
max 0.833 0.889 0.750
min -5.000 -4.000 -0.556σ2 = 1.0 mean -0.020 0.361 0.575
max 0.750 0.900 0.973
min -1.000 -5.000 0.000σ2 = 0.1 mean 0.000 0.409 0.915
max 0.500 0.889 0.974

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.8: Kendall-tau performance results using Pg as a static aggre-
gator. The x-axis denotes the misinformation (nMI) when
there are 15 input rankers. The y-axis denotes the noise (σ2).
Each misinformation and noise case displays the minimum,
mean and maximum Kendall-tau performance improvement
observed in the 40,000 queries. Part (a) displays the im-
provement when all queries are correctly classified in terms
of misinformation and noise and part (b) displays the im-
provement when using Bayes Theorem.

143

min -3.000 -4.000 0.000σ2 = 7.5 mean 0.023 0.005 0.000
max 0.875 0.800 0.000
min -6.000 -5.000 -2.667σ2 = 5.0 mean 0.033 -0.002 -0.012
max 0.917 0.875 0.500
min -5.000 -6.000 -12.000σ2 = 1.0 mean 0.014 -0.013 0.124
max 0.857 0.875 0.941
min -2.000 -6.000 -8.000σ2 = 0.1 mean 0.000 0.002 0.202
max 0.667 0.857 0.970

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -2.000 -6.000 -2.500σ2 = 7.5 mean -0.005 -0.002 -0.001
max 0.889 0.889 0.667
min -10.000 -7.000 -4.000σ2 = 5.0 mean -0.012 0.052 0.033
max 0.889 0.864 0.539

min -5.000 -7.000 -13.500σ2 = 1.0 mean -0.028 0.582 0.522
max 0.857 0.875 0.955
min -2.000 -5.000 -11.000σ2 = 0.1 mean -0.001 0.698 0.893
max 0.667 0.857 0.963

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.9: Kendall-tau performance results using MeIBF as a static ag-
gregator. Refer to Figure 8.8 for a full description.

reach the full improvement associated with that class. When MeIBF and CombMNZ

are considered static, we observe similar trends that the cost-based classification

method shows improvements but does not reach the best achievable. In the table

below, we show the average Kendall-tau over all 12 classes. We notice that the cost-

based classification method clearly outperforms the static aggregators by producing

a lower Kendall-tau.

144

min -0.500 -0.667 -1.429σ2 = 7.5 mean 0.000 -0.001 -0.002
max 0.333 0.200 0.750
min -4.000 -6.000 -1.000σ2 = 5.0 mean -0.005 0.052 0.039
max 0.857 0.917 0.833
min -3.000 -5.000 -0.750σ2 = 1.0 mean -0.013 0.591 0.575
max 0.833 0.933 0.966
min -2.000 -1.000 -0.222σ2 = 0.1 mean 0.000 0.703 0.907
max 0.667 0.923 0.971

nMI = 0 nMI = 2 nMI = 7

(a) optimal classification, best aggregator in each class

min -2.000 -2.000 -0.667σ2 = 7.5 mean -0.005 -0.002 -0.001
max 0.500 0.833 0.500
min -4.000 -6.000 -1.250σ2 = 5.0 mean -0.012 0.052 0.033
max 0.857 0.923 0.857
min -7.000 -5.000 -0.706σ2 = 1.0 mean -0.028 0.582 0.522
max 0.857 0.938 0.969
min -2.000 -5.000 -0.222σ2 = 0.1 mean -0.001 0.698 0.893
max 0.667 0.917 0.969

nMI = 0 nMI = 2 nMI = 7

(b) cost-based classification

Figure 8.10: Kendall-tau performance results using CombMNZ as a
static aggregator. Refer to Figure 8.8 for a full description.

optimal classification 18.869
cost-based classification 19.091

Pg 21.313
MeIBF 19.384

CombMNZ 22.115

145

As we did with the precision, we record the accuracy count for each each class.

Each row in the table below gives the number of new queries that are classified in

each class. Once again, class 1 correctly identify a new query’s class in a majority

of cases. Both class 2 and 3 have the top aggregator of Pg and for a majority of

new queries, class 2 or 3 are correctly identified. When PrOpt is the top aggregator,

classes 4 and 8, the cost-based classification approach misclassifies as being class 2

or 3. Both classes 5 and 6 uses the Cfuse rank aggregation method; however class

5 is typically misclassified as class 10 while class 6 makes the correct classification.

Classes 7 and 11 are correctly classified using the PgADJ rank aggregation method.

Classes 8 and 12 are misclassified as class 2 or 3. Class 9 is misclassified as class

10 and class 10 is misclassified as either class 5 or 6. We notice two classes, 9 and

12, in which a new query is never classified. The Me and MeIBF rank aggregation

methods have a high penalty value as we observed for PgADJ and Me when using

the precision performance measure. We see through this experiment that the cost-

based classification method does not always identify the correct class for the queries

but the the substitution of another aggregation method due to misclassification does

not degrade the performance dramatically.

1 2 3 4 5 6 7 8 9 10 11 12
1 29980 841 860 0 413 418 76 0 0 7341 71 0
2 486 14116 14364 0 3977 4146 1314 0 0 346 1251 0
3 0 17521 17443 77 20 28 2456 78 0 0 2377 0
4 0 17493 17504 1623 0 0 934 1616 0 0 830 0
5 0 6 13 0 3801 3842 43 0 0 32252 43 0
6 0 621 628 0 18103 18438 1064 0 0 81 1065 0
7 0 4949 5010 8 197 197 14875 11 0 0 14753 0
8 0 17044 17234 1201 6 4 1641 1170 0 0 1700 0
9 0 3 2 0 3570 3469 5 0 0 32944 7 0
10 0 250 262 0 19211 19061 626 0 0 5 585 0
11 0 2411 2316 5 0 0 17720 4 0 0 17544 0
12 0 16525 16499 586 0 0 2930 612 0 0 2848 0

Real setting application. We have shown the possibility of using cluster quality

and rank variance to find which class a new set of rankers belongs. We have also

shown that if there is noise and misinformation, the dynamic methods may perform

146

better than a static aggregator. However, in our statistical framework, we have

perfect knowledge about the misinformation and noise of past data sets. In a real

life scenario, this is not possible. Another unknown in our approach is to identify

the best aggregator for each class. Again, in real world, it is not possible to know

the ground truth and hence we can not identify the best aggregator with respect to

the ground truth. However, a more limited set of experiments can be run.

We can replicate our experiments in the real world. We must first define the

query space. Given the queries posed to search engines and the associated search

results, we can organize the queries with respect to misinformation and noise. These

queries and their search results were our motivation for the statistical framework

presented in Chapter 6. For each query and its rankings of search results, we can

cluster the rankings to obtain cluster quality or misinformation and compute the

variance of the ranks to define the noise. We can then find the similarity between

queries based on the cluster quality and rank variance. The similarity amongst

queries can be a function of the closeness between the cluster qualities and rank

variance for every distinct pair of queries. The clustering of the query space will

give us the different behavior of rankers with respect to different queries. We can

use these regions to represent different noise and misinformation cases.

Once the different noise and misinformation classes have been identified, we

then need to find the best aggregators for each case. We can compute the top

aggregator by running the evaluation discussed in Chapter 4. We should note that

a small number of pairs may be needed to learn the ordering of rankers in each class.

As we are not trying to learn the exact ordering of all objects, but only the ordering

of rankers, hence we do not need a large volume of training data.

Since there is no ground truth in web searching, we have the option of using

relevance feedback [5, 17, 24], expert judgments [7, 13] or clicked search results

[75] to represent a perceived ground truth. The ground truth equivalent and the

top aggregators for misinformation and noise can be evaluated using the measures

described in Chapter 3. When there is a new query, it can be classified using

precision or Kendall-tau based on its ranker characteristics in which a dynamic

aggregator can be used in lieu of a static aggregator.

CHAPTER 9

SUMMARY AND CONCLUSIONS

As a subset of the rank aggregation problem, we examine how the trustworthiness

of the input rankers (misinformation) and the degree of noise in the input rankers

(such as spam) contribute in influencing the choice in an aggregation method. In

prior research, spam has been identified as a factor in varying performance of rank

aggregation methods. However, this work does not provide a clear model of what

constitutes spam. Our work provides the first principled study of noise in general

and spam in particular in rank aggregation. We also introduce another factor,

misinformation, to our study which models how well rankers act with respect to the

ground truth. In an adversarial scenario, rankers cannot be expected to perform

well uniformly for all queries. It is possible that certain rankers provide bad results

due to different valuation systems or by purposefully mislead the rank aggregation

systems.

In a real setting where the noise level and misinformation of rankers may vary

greatly, the choice of an optimal aggregator depends greatly on how it handles noise

and misinformation. We conclude that there is not a single aggregation method

that performs well across each misinformation and noise case. As a result, we

must develop methods to customize the rank aggregation methods to reflect the

fluctuations in misinformation and noise. In this thesis, we have prove our first

claim and then develop customization methods for dynamic rank aggregation.

We set out to investigate this problem by first designing a benchmarking sys-

tem that we use to compare the aggregation methods. Our statistical framework

models the relationship between rankers and the ground truth, the true ranking. It

then evaluates the rank aggregation methods with respect to the ground truth. This

method is a divergence from the previous work in this area which uses real data sets.

By using a statistical framework, we are able to control the test cases and generate

statistically significant number of tests for each case. We model noise, spam as a

special type of noise and misinformation in this model. We can also model various

147

148

types of correlations that may exist between the rankers, objects and the errors that

the rankers make for these objects.

We test well-known rank aggregation methods as well as a number of novel

methods that we introduce using this statistical model. We also verify our results

using real data sets. We introduce a rank aggregation algorithm called PrOpt (pre-

cision optimal) which is a simpler variation of the well-known CombMNZ method,

and the IBF (iterative best flip) optimization method for optimizing the Kendall-

tau error between input rankers. We also investigate other optimization methods

for the Kendall-tau error for the equivalent graph problem of minimum feedback

arc set (MFAS). We study three approximation algorithms based on a greedy ap-

proach (Greedy), sublist iterative best flip (SubIBF) and cut partitioning (CUT).

The algorithms studied in this thesis present the most comprehensive study to date

in this area. We study the effect of number of rankers, noise and misinformation

and various correlations between the rankers.

Through the experimental evaluation, we show that the best aggregation

method changes with respect to the misinformation and noise in the rankers. Rank

aggregation methods that are more resistant to noise tend to disregard information

available in the rankers. These rankers are not optimal in the case of low noise.

Rank aggregation methods that tend to treat all rankers uniformly do well if there

is no misinformation available in the rankers. However, if there is asymmetry be-

tween the performance of the rankers, then a ranker that is robust with respect to

outliers is needed. However, as the noise and misinformation increases, there is less

information available in each ranker. As a result, there is a need to incorporate

more information from each ranker. In this case, the most robust rankers are not

optimal. Table 9.1 provides a listing of the algorithms studied in this thesis and the

specific observations made about these algorithms. We validate our findings with

two real datasets. The first data set is a collection of rankings from real life search

engines. We use this dataset to validate our results. We find the best rank aggre-

gation methods with a user study and decide on noise and misinformation levels

empirically. The ordering of rankers support our original findings. We also conduct

a study using the TREC data set with known relevance labels. We verify our results

149

in this setting as well.

Algorithm Observation
Av Considers most information of all the rankers provided,

performs best when there is no noise or very high misin-
formation

Me Considers the median ranker, robust to outliers, performs
best when there is little noise and some misinformation

Pg Approximates Kendall-tau optimal ranking, robust to
outliers, performs best in noisy but low misinformation
cases

PrOpt Disregards most rank information in noisy data, highly
robust in high noise cases

CombMNZ Similar to PrOpt, but considers rank information to a
higher degree. PrOpt outperforms CombMNZ in very
high noise cases

Cfuse A greedy Kendall-tau optimizer that disregards most
rank information, considers less information than Pg.
Best in noisy cases with some misinformation

xADJ A somewhat local optimizer for Kendall, it is good in
cases that needs some robustness

xIBF A global Kendall-tau optimizer, best in cases needing
high robustness

Greedy Very susceptible to wrong decisions and generally not
competitive

xSubIBF Similar to IBF, but more efficient
xCUT Global optimizer similar to IBF, generally a better op-

timizer than IBF resulting in more robust rankings but
more costly

Table 9.1: Synopsis of Algorithms

Research Extensions. Even though spam is one of the main problems facing

search engines today, it is not the only one. Search engines are designed for the

general public hence serves the most common interests of users. However, this may

not always provide the most useful search results for a specific user or query. For

example, when we are searching for a historic document on a topic, the freshness of

information may not be very important for our search. Furthermore, search engines

may have noisy estimates of this factor based on the frequency of visits to each site.

Similarly, when searching for two keywords, we might be more interested in one

150

term than the other. When searching a topic that has more than one established

viewpoint on the Web, we might be interested in one perspective over the others.

Hence, we might want to tailor the search results to match our specific interests

while retaining the obvious benefits of meta-search engines.

This thesis work can be extended in several ways. One extension would con-

sider using scores instead of ranks. The features of image and video data consider

colors, textures and shapes in which accuracy of this metadata is required to de-

termine the best match for a request. If we were to use ranks, the granularity of

the metadata would be compromised. Instead of considering only the first K, we

may want to consider all the feature information that is above a certain threshold

since scores are not always monotonic. Another extension of this research would be

incorporating the customization of aggregation to search results. We would need to

estimate, as accurately as we can, the search query space through the use of clus-

tering, human evaluators or relevance feedback. Next, we can use a classification

method to determine misinformation and noise and identify the best aggregators.

Then we can adapt the search results to reflect the query’s misinformation and noise

by predicting the appropriate aggregation method. Lastly, a long-term extension

involves changing the search results based on the previous clicked data. This dif-

ferent searching system would not simply include new results when querying the

same information at different intervals. The searching system could use or ignore

the previous selections, identified by the current user, to adapt the search results

dynamically. The static search results retrieval would make way for more dynamic

and interactive searching experience.

CITED LITERATURE

[1] M. Abidi and R. Gonzalez. Data Fusion in Robotics and Machine
Intelligence. Academic Press, Inc., 1992.

[2] E. Agichtein, S. Lawrence, and L. Gravano. Learning search engine specific
query transformations for question answering. In World Wide Web, pages
169–178, 2001.

[3] R. Agrawal and E. Wimmers. A framework for expressing and combining
preference. In Proceedings of ACM SIGMOD, pages 297–306, 2000.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent
information: ranking and clustering. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), pages 684–693, 2005.

[5] J. Allan. Incremental relevance feedback for information filtering. In
Proceedings of ACM SIGIR, pages 270–278, 1996.

[6] N. Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics,
20(1):137–142, 2006.

[7] B. Amento, L. Terveen, and W. Hill. Does authority mean quality?
predicting expert quality ratings of web documents. In Proceedings of ACM
SIGIR, pages 296–303, 2000.

[8] P. Andritsos, J. R. J. Miller, and P. Tsaparas. Information-theoretic tools for
mining database structure from large data sets. In Proceedings of ACM
SIGMOD, pages 731–742, 2004.

[9] J. A. Aslam and M. Montague. Models of metasearch. In Proceedings of
ACM SIGIR, pages 276–284, 2001.

[10] B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings of
ACM SIGMOD, pages 28–39, 2003.

[11] J. Bar-Ilan. Search engine results over time–a case study on search engine
stability. Cybermetrics, 2/3(1), 1998/9.

[12] J. Bar-Ilan. Methods for measuring search engine performance over time.
Journal of the American Society for Information Science and Technology,
53(4):308–319, 2002.

[13] J. Bar-Ilan, M. Levene, and M. Mat-Hassan. Dynamics of search engine
rankings - a case study. In International Workshop on Web Dynamics, 2004.

151

152

[14] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it
can be difficult to tell who won the election. Social Choice and Welfare,
6(2):157–165, 1989.

[15] I. Bartolini, P. Ciaccia, V. Oria, and M. T. Ozsu. Integrating the results of
multimedia sub-queries using qualitative preferences. In International
Workshop on Multimedia Information Systems, pages 66–75, 2004.

[16] M. M. S. Beg and N. Ahmad. Soft computing techniques for rank
aggregation on the world wide web. World Wide Web: Internet and Web
information Systems, 6(1):5–22, 2003.

[17] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis, A. Chowdhury, and
A. Kolcz. Improving automatic query classification via semi-supervised
learning. In Proceedings of the IEEE International Conference on Data
Mining (ICDM 2005), pages 42–49, 2005.

[18] A. Benczur, K. Csalogany, T. Sarlos, and M. Uher. Spamrank - fully
automatic link spam detection. In International Workshop on Adversarial
Information Retrieval on the Web, 2005.

[19] M. K. Bergman. The deep web: Surfacing the hidden value.
http://www.brightplanet.com/pdf/deepwebwhitepaper.pdf, 2001.

[20] E. Bertino, D. Montesi, and A. Trombetta. Fuzzy and presentation algebras
for web and multimedia data. In Proceedings of IEEE International
Symposium on Database Engineering and Applications, pages 134–144, 2000.

[21] K. Bharat and M. Hensinger. Improved algorithms for topic distillation in a
hyperlinked environment. In Proceedings of ACM SIGIR, pages 104–111,
1998.

[22] K. Bharat and G. Mihaila. When experts agree: Using non-affliated experts
to rank popular topics. ACM Transactions on Information Systems,
20(1):47–58, 2002.

[23] M. Bianchini, M. Gori, and F. Scarselli. Inside pagerank. ACM Transactions
on Internet Technology, 5(1):92–128, 2005.

[24] A. Bifet, C. Castillo, P. A. Chirita, and I. Weber. An analysis of factors used
in search engine ranking. In Proceedings of the International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb), 2005.

[25] J. C. Borda. Mémoire sur les élections au scrutin. In Histoire de l’Académie
Royale des Sciences, 1781.

153

[26] A. Borodin, G. Roberts, J. Rosenthal, and P. Tsaparas. Link analysis
ranking: Algorithms, theory, and experiments. ACM Transactions on
Internet Technology, 5(1):231–297, 2005.

[27] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In
Proceedings of the IEEE International Conference on Data Engineering
(ICDE), pages 421–430, 2001.

[28] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Proceedings of ACM WWW, pages 107–117, 1998.

[29] N. Bruno and S. Chaudhuri. Conditional selectivity for statistics on query
expressions. In Proceedings of ACM SIGMOD, pages 211–322, 2004.

[30] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over
relational databases: Mapping strategies and performance evaluation. ACM
Transactions on Database Systems, 27(2):153–187, 2002.

[31] C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete
information. In Proceedings of ACM SIGIR, pages 25–48, 2004.

[32] P. Calado, N. Z. Berthier Ribeiro-Neto, E. Moura, and I. Silva. Local versus
global link information in the web. ACM Transactions on Information
Systems, 21(1):42–63, 2003.

[33] K. Chakrabarti, S. Chaudhuri, and S. won Hwang. Automatic categorization
of query results. In Proceedings of ACM SIGMOD, pages 755–766, 2004.

[34] S. Chakrabarti. Mining the Web: Discovering Knowlegde from Hypertext
Data. Morgan Kaufmann Publishers, 2003.

[35] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines
with partially-ordered domains. In Proceedings of ACM SIGMOD, pages
203–214, 2005.

[36] K. C.-C. Chang and S. won Hwang. Minimal probing: Supporting expensive
predicates for top-k queries. In Proceedings of ACM SIGMOD, pages
346–357, 2002.

[37] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith.
The onion technique: Indexing for linear optimization queries. In Proceedings
of ACM SIGMOD, pages 391–402, 2000.

[38] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic ranking of
database query results. In Proceedings of ACM VLDB, pages 888–899, 2004.

[39] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection
queries over multimedia repositories. IEEE Transactions on Knowledge and
Data Engineering, 16(8):992–1009, 2004.

154

[40] F. Y. L. Chin, X. Deng, Q. Fang, and S. Zhu. Approximate and dynamic
rank aggregation. Theoretical Computer Science, 325(3):409–424, 2004.

[41] J. Cho and S. Roy. Impact of search engines on page popularity. In
Proceedings of ACM WWW, pages 20–29, 2004.

[42] J. Cho, S. Roy, and R. E. Adams. Page quality: In search of an unbiased web
ranking. In Proceedings of ACM SIGMOD, pages 551–562, 2005.

[43] J. Chomicki. Preference formulas in relational queries. ACM Transactions
on Database Systems, 28(4):427–466, 2003.

[44] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things.
Journal of Artificial Intelligence Research (JAIR), 10:243–270, 1999.

[45] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number
of wins gives a good ranking for weighted tournaments. In ACM-SIAM
Symposium on Discrete Algorithms, pages 776–782, 2006.

[46] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(Second Edition). McGraw-Hill, 2001.

[47] L. F. Cranor and B. A. LaMacchia. Spam! Communications of the ACM,
41(8):74–83, 1998.

[48] N. Craswell, F. Crimmins, D. Hawkings, and A. Moffat. Performance and
cost tradeoffs in web search. In Proceedings of the 15th Australasian
Database Conference, pages 161–169, 2004.

[49] B. Davison. Recognizing nepotistic links on the web. In Workshop on
Artificial Intelligence for Web Search, pages 23–28, 2000.

[50] P. Diaconis. Group representation in probability and statistics. In IMS
Lecture Series 11, 1988.

[51] P. Diaconis and R. Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society. Series B, 39(2):262–268, 1977.

[52] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n
queries. In Proceedings of ACM VLDB, pages 411–422, 1999.

[53] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation
methods for the web. In Proceedings of ACM WWW, pages 613–622, 2001.

[54] N. Eiron, K. McCurley, and J. Tomlin. Ranking the web frontier. In
Proceedings of ACM WWW, pages 309–318, 2004.

[55] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J.
Discrete Mathematics, 17(1):134–160, 2003.

155

[56] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation. In Proceedings of ACM SIGMOD, pages
301–312, 2003.

[57] R. Fagin and E. L. Wimmers. A formula for incorporating weights into
scoring rules. Theoretical Computer Science, 239(2):309–338, 2000.

[58] P. Ferragina and A. Gulli. A personalized search engine based on web-snippet
hierarchical clustering. In Proceedings of ACM WWW, pages 801–810, 2005.

[59] D. Fetterly, M. Manasse, and N. Najork. Spam, damn spam, and statistics:
using statistical analysis to locate spam web pages. In Proceedings of the
International Workshop on the Web and Databases, pages 1–6, 2004.

[60] J. Fox and E. Shaw. Combination of multiple sources: The trec-2 interactive
track matrix experiment. In Proceedings of ACM SIGIR, 1994.

[61] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research,
4(6):933–969, 2004.

[62] L. Gravano and H. Garcia-Molina. Merging ranks from heterogeneous
internet sources. In Proceedings of ACM VLDB, pages 196–205, 1997.

[63] U. Guntzer, W.-T. Blake, and W. Kiessling. Optimizing multi-feature queries
for image databases. In Proceedings of ACM VLDB, pages 419–428, 2000.

[64] U. Guntzer, W.-T. Blake, and W. Kiessling. Toward efficient multi-feature
queries in hetergeneous environments. In IEEE International Conference on
Information Technology:Coding and Computing, 2001.

[65] T. Haveliwala. Topic-sensitive pagerank. In Proceedings of ACM WWW,
pages 517–526, 2002.

[66] S. Holland, M. Ester, and W. Kiessling. Preference mining: A novel
approach on mining user preferences for personalized applications. In 7th
European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 204–216, 2003.

[67] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the
efficient execution of multi-parametric ranked queries. In Proceedings of
ACM SIGMOD, pages 259–270, 2001.

[68] V. Hristidis and Y. Papakonstantinou. Algorithms and application for
answering ranked queries using ranked views. VLDB Journal, 13:49–70, 2004.

[69] http://trec.nist.gov/. Text retrieval conference (trec), 1999.

156

[70] I. Ilyas, W. Aref, and A. Elmagarmid. Joining ranked inputs in practice. In
Proceedings of ACM VLDB, pages 950–961, 2002.

[71] I. Ilyas, R. Shah, W. Aref, J. S. Vitter, and A. Elmagarmid. Rank-aware
query optimization. In Proceedings of ACM SIGMOD, pages 203–214, 2004.

[72] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases. VLDB Journal, 13:207–221, 2004.

[73] B. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information
retrieval: A study of user queries on the web. ACM SIGIR Forum,
32(1):5–17, 1998.

[74] K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly
relevant documents. In Proceedings of ACM SIGIR, pages 41–48, 2000.

[75] T. Joachims. Optimizing search engines using clickthrough data. In
Proceedings of ACM SIGKDD, pages 133–142, 2002.

[76] J. Kemeny and J. Snell. Mathematical models in the social sciences, 1962.

[77] J. G. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.

[78] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49(1):291–307, 1970.

[79] R. Khoussainov and N. Kushmerick. Specialisation dynamics in federated
web search. In Proceedings of the ACM CIKM International Workshop on
Web Information and Data Management (WIDM), pages 112–119, 2004.

[80] W. Kiessling. Foundations of preferences in database systems. In Proceedings
of ACM VLDB, pages 311–322, 2002.

[81] W. Kiessling. Preference queries with sv-semantics. In International
Conference of Management of Data, pages 25–26, 2005.

[82] L. A. Klein. Sensor and Data Fusion: A tool for Information Assessment and
Decision Making. The International Society for Optical Engineering, 1999.

[83] R. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

[84] G. Koutrika and Y. Ioannidis. Personalized queries under a generalized
preference model. In Proceedings of the 21st International Conference on
Data Engineering (ICDE), pages 841–852, 2005.

[85] G. Lebanon and J. Lafferty. Cranking: Combining rankings using conditional
probability models on permutations. In Proceedings of the International
Conference on Machine Learning, pages 363–370, 2002.

157

[86] J. H. Lee. Analyses of multiple evidence combination. In Proceedings of
ACM SIGIR, pages 267–276, 1997.

[87] R. Lempel and S. Moran. Salsa: The stochastic approach for link-structure
analysis. ACM Transactions on Information Systems, 19(2):131–160, 2001.

[88] R. Lempel and S. Moran. Predictive caching and prefetching of query results
in search engines. In Proceedings of ACM WWW, pages 19–28, 2003.

[89] R. Lempel and S. Moran. Rank-stability and rank-similarity of link-based
web ranking algorithms in authority-connected graphs. Information
Retrieval, 8(2):245–264, 2005.

[90] A. Lotem, R. Fagin, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66:614–656, 2003.

[91] Y. Lu, W. Meng, L. Shu, C. Yu, and K.-L. Liu. Evaluation of result merging
strategies for metasearch engines. In Proceedings of the 6th International
Conference on Web Information Systems Engineering (WISE), 2005.

[92] C. Manning and H. Schútze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[93] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases. ACM Transactions on Database Systems,
29(2):319–362, 2004.

[94] I. McLean and A. B. Urken. Classics of Social Choice. The University of
Michigan Press, 1995.

[95] W. Meng, Z. Wu, C. Yu, and Z. Li. A highly scalable and effective method
of methasearch. ACM Transactions on Information Systems, 19(3):310–335,
2001.

[96] W. Meng, C. Yu, and K.-L. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys, 34(1):48–89, 2002.

[97] M. Montague and J. A. Aslam. Condorcet fusion for improved retrieval. In
Proceedings of ACM CIKM, pages 538–548, 2002.

[98] A. Motro, P. Anokhin, and A. C. Acar. Utility-based resolution of data
inconsistencies. In Proceedings of the ACM International Workshop on
Information Quality in Information Systems (IQIS), pages 35–43, 2004.

[99] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting
incremental join queries on ranked inputs. In Proceedings of ACM VLDB,
pages 281–290, 2001.

158

[100] S. Pandey, S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling a
stacked deck: the case for partially randomized ranking of search engine
results. In Proceedings of ACM VLDB, pages 781–792, 2005.

[101] R. K. Pon and A. F. Cárdenas. Data quality inference. In Proceedings of the
2nd International Workshop on Information Quality in Information Systems
(IQIS), pages 105–111, 2005.

[102] A. L. Powell and J. C. French. Comparing the performance of collection
selection algorithms. ACM Transactions on Information Systems,
21(4):412–456, 2003.

[103] Y. Rasolofo, D. Hawking, and J. Savoy. Results merging strategies for a
current news metasercher. Information Processing and Management,
39(4):581–609, 2003.

[104] M. E. Renda and U. Straccia. Web metasearch: Rank vs. score based rank
aggregation methods. In Proceedings of ACM SAC, pages 841–846, 2003.

[105] T. Ross. Fuzzy Logic with Engineering Applications. McGraw-Hill,Inc., 1995.

[106] Y. Saab. A fast and effective algorithm for the feedback arc set problem.
Journal of Heuristics, 7(3):235–250, 2001.

[107] D. Saari. Basic Geometry of Voting. Springer-Verlag, 1995.

[108] G. Salton. Automatic Information Organization and Retrieval.
McGraw-Hill,Inc., 1968.

[109] P. C. Saraiva, E. S. de Moura, N. Ziviani, W. Meira, R. Fonseca, and
B. Ribeiro-Neto. Rank-preserving two-level caching for scalable search
engines. In Proceedings of ACM SIGIR, pages 51–58, 2001.

[110] SearchEngineWatch. http://searchenginwatch.com.

[111] L. Si and J. Callan. Using sampled data and regression to merge search
engine results. In Proceedings of ACM SIGIR, pages 19–26, 2002.

[112] L. Si and J. Callan. A semisupervised learning methods to merge search
engine results. ACM Transactions on Information Systems, 21(4):457–491,
2003.

[113] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated
analysis of interests and activities. In Proceedings of ACM SIGIR, pages
449–456, 2005.

[114] Teoma. http://www.teoma.com, 2000.

159

[115] J. Tomlin. A new paradigm for ranking pages on the world wide web. In
Proceedings of ACM WWW, pages 350–355, 2003.

[116] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked
join indices. In Proceedings of IEEE ICDE, 2003.

[117] T. Tsikrika and M. Lalmas. Merging techniques for performing data fusion
on the web. In Proceedings of ACM CIKM, pages 127–134, 2001.

[118] L. Vaughan. New measurements for search engine evaluation proposed and
tested. Information Processing and Management, 40(4):677–691, 2004.

[119] Vivissimo. http://www.vivissimo.com, 2000.

[120] M. Wechsler and P. Schauble. A new ranking principle for multimedia
information retrieval. In Proceedings of the ACM conference on Digital
Libraries, pages 146–151, 1999.

[121] Z. Wu, W. Meng, C. Yu, and Z. Li. Towards a highly-scalable and effective
metasearch engine. In Proceedings of ACM WWW, pages 386–395, 2001.

[122] C. Yu and W. Meng. Web search technology. In The Internet Encyclopedia,
pages 738–753, 2003.

